
swarm(1) USER COMMANDS swarm(1)

NAME
swarm — find clusters of nearly-identical nucleotide amplicons

SYNOPSIS
swarm [options] filename

DESCRIPTION
Environmental or clinical molecular studies generate large volumes of amplicons (e.g., 16S or 18S SSU-
rRNA sequences) that need to be clustered into molecular operational taxonomic units (OTUs). Common
clustering methods are based on greedy, input-order dependent algorithms, with arbitrary selection of
global cluster size and cluster centroids. To address that problem, we developedswarm, a fast and robust
method that recursively groups amplicons withd or less differences.swarm produces natural and stable
clusters centered on local peaks of abundance, free from centroid selection induced input-order dependency.

Exact clustering is impractical on large data sets when using a naïve all-vs-all approach (more precisely a
2-combination without repetitions), as it implies unrealistic numbers of pairwise comparisons.swarm is
based on a maximum number of differencesd between two amplicons, and focuses only on very close local
relationships. For d = 1 (default value), swarm uses an algorithm of linear complexity that performs exact-
string matching by comparing hash-values. For d = 2 or greater, swarm uses an algorithm of quadratic com-
plexity that performs pairwise string comparisons. An efficient k-mer-based filtering and an astute use of
comparisons results obtained during the clustering process allows to avoid most of the amplicon compar-
isons needed in a naïve approach. To speed up the remaining amplicon comparisons,swarm implements an
extremely fast Needleman-Wunsch algorithm making use of the Streaming SIMD Extensions (SSE2) of
modern x86-64 CPUs. If SSE2 instructions are not available,swarm exits with an error message.

swarm reads the named inputfilename, a fasta file of nucleotide amplicons. The amplicon identifier is
defined as the string comprised between the ">" symbol and the first space or the end of the line, whichever
comes first. Asswarm outputs lists of amplicon identifiers, amplicon identifiers must be unique to avoid
ambiguity; swarm exits with an error message if identifiers are not unique. Amplicon identifiers must end
with a "_" followed by a positive integer representing the amplicon copy number (or abundance annotation;
usearch/vsearch users can use the option -z to change that behavior). Abundance annotations play a crucial
role in the clustering process, and swarm exits with an error message if that information is not available.
The amplicon sequence is defined as a string of [acgt] or [acgu] symbols (case insensitive), starting after the
end of the identifier line and ending before the next identifier line or the file end;swarm exits with an error
message if any other symbol is present.

General options
-b, --boundary positive integer

when using the option --fastidious (-f), define the minimum mass of a large OTU as the number
given with this option. The default value is 3, indicating that any OTU with mass 3 or more is
considered "large". Bydefault, an OTU is "small" if it has a mass of 2 or less, meaning that it is
composed of either one amplicon of abundance 2, or two amplicons of abundance 1. Any posi-
tive value greater than 1 can be specified. Using higher boundary values will speed up the sec-
ond pass, but also reduce the taxonomical resolution ofswarm results.

-c, --ceiling positive integer
when using the option --fastidious (-f), defineswarm’s maximum memory footprint (in
megabytes).swarm will adjust the --bloom-bits (-y) value of the Bloom filter to fit within the
specified amount of memory. That option is not active by default.

-d, --differenceszero or positive integer
maximum number of differences allowed between two amplicons, meaning that two amplicons
will be grouped if they hav e integer (or less) differences. This isswarm’s most important
parameter. The number of differences is calculated as the number of mismatches (substitutions,
insertions or deletions) between the two amplicons once the optimal pairwise global alignment
has been found (see "pairwise alignment advanced options" to influencing that step). Any inte-
ger between 0 and 256 can be used, but highd values will decrease the taxonomical resolution
of swarm results. Commonly usedd values are 1, 2 or 3, rarely higher. When usingd = 0,
swarm will output results corresponding to a strict dereplication of the dataset, i.e. merging

version 2.1.6 December 14, 2015 1

swarm(1) USER COMMANDS swarm(1)

identical amplicons. Warning, swarm still requires fasta entries to present abundance values.
Default number of differences is 1.

-f, --fastidious
when working withd = 1, perform a second clustering pass to reduce the number of small OTUs
(recommended option). During the clustering process withd = 1, an intermediate amplicon can
be missing for purely stochastic reasons, interrupting the aggregation process. That option will
create virtual amplicons, allowing to graft small OTUs upon bigger ones. By default, an OTU is
"small" if it has a mass of 2 or less (see the --boundary option to increase that value). To speed
things up,swarm uses a Bloom filter to store intermediate results. Warning, that second pass
can be 2 to 3 times slower than the first pass and requires much more memory. See the options
--bloom-bits (-y) or --ceiling (-c) to control the memory footprint of the Bloom filter. Warning,
the fastidious option modifies clustering results. The output files produced by the options --log
(-l), --output-file (-o), --mothur (-r), --uclust-file, and --seeds (-w) are updated to reflect these
modifications; the file --statistics-file (-s) is partially updated (columns 6 and 7 are not updated);
the output file --internal-structure (-i) is not updated.

-h, --help display this help and exit.

-n, --no-otu-breaking
deactivate the built-in OTU refinement (not recommended). Amplicon abundance values are
used to identify transitions among in-contact OTUs and to separate them, yielding higher-resolu-
tion clustering results. That option prevents that separation, and in practice, allows the creation
of a link between amplicons A and B, even if the abundance of B is higher than the abundance
of A.

-t, --threads positive integer
number of computation threads to use. The number of threads should be lesser or equal to the
number of available CPU cores. Default number of threads is 1.

-v, --version
output version information and exit.

-y, --bloom-bits positive integer
when using the option --fastidious (-f), define the size (in bits) of each entry in the Bloom filter.
That option allows to balance the efficiency (i.e. speed) and the memory footprint of the Bloom
filter. Large values will make the Bloom filter more efficient but will require more memory. Any
value between 4 and 20 can be used. Default value is 16. See the --ceiling (-c) option for an
alternative way to control the memory footprint.

Input/output options
-a, --append-abundancepositive integer

set abundance value to use when some or all amplicons in the input file lack abundance values.
Warning, it is not recommended to useswarm on datasets where abundance values are all iden-
tical. We provide that option as a courtesy to advanced users, please use it carefully. swarm
exits with an error message if abundance values are missing and if this option is not used.

-i, --internal-structure filename
output all pairs of nearly-identical amplicons tofilenameusing a five-columns tab-delimited for-
mat:

1. ampliconA label.

2. ampliconB label.

3. numberof differences between amplicons A and B (positive integer).

4. OTU number (positive integer). OTUs are numbered in their order of delineation,
starting from 1. All pairs of amplicons belonging to the same OTU will receive the
same number.

version 2.1.6 December 14, 2015 2

swarm(1) USER COMMANDS swarm(1)

5. numberof steps from the OTU seed to amplicon B (positive integer).

-l, --log filename
output all messages tofilenameinstead ofstandard error , with the exception of error messages
of course. That option is useful in situations where writing tostandard error is problematic (for
example, with certain job schedulers).

-o, --output-file filename
output clustering results tofilename. Results consist of a list of OTUs, one OTU per line. An
OTU is a list of amplicon identifiers separated by spaces. Default is to write to standard output.

-r , --mothur
output clustering results in a format compatible with Mothur. That option modifiesswarm’s
default output format.

-s, --statistics-file filename
output statistics tofilename. The file is a tab-separated table with one OTU per row and seven
columns of information:

1. numberof unique amplicons in the OTU,

2. totalcopy number of amplicons in the OTU,

3. identifierof the initial seed,

4. initial seed copy number,

5. numberof amplicons with a copy number of 1 in the OTU,

6. maximumnumber of iterations before the OTU reached its natural limits),

7. theoreticalmaximum radius of the OTU (i.e., number of cummulated differences
between the seed and the furthermost amplicon in the OTU). The actual maximum
radius of the OTU is often much smaller.

-u, --uclust-file filename
output clustering results in uclust-like file format to the specified file. That option does not mod-
ify swarm’s default output format.

-w, --seedsfilename
output OTU representatives to filenamein fasta format. The abundance value of each representa-
tive is the sum of the abundances of all the amplicons in the OTU.

-z, --usearch-abundance
accept amplicon abundance values in usearch/vsearch’s style (>label;size=integer[;]). That
option influences the abundance annotation style used in output files.

Pairwise alignment advanced options
when usingd > 1, swarm recognizes advanced command-line options modifying the pairwise global align-
ment scoring parameters:

-m, --match-reward positive integer
set the reward for a nucleotide match. Default is 5.

-p, --mismatch-penalty positive integer
set the penalty for a nucleotide mismatch. Default is 4.

-g, --gap-opening-penaltypositive integer
set the gap open penalty. Default is 12.

-e, --gap-extension-penaltypositive integer
set the gap extension penalty. Default is 4.

As swarm focuses on close relationships (i.e.d = 2 or 3), clustering results are resilient to pairwise align-
ment model parameters modifications. Modifying model parameters has a stronger impact when clustering
using a higherd value.

version 2.1.6 December 14, 2015 3

swarm(1) USER COMMANDS swarm(1)

EXAMPLES
Clusterize the data setmyfile.fastainto OTUs with the finest resolution possible (1 difference, built-in
breaking, fastidious option) using 4 computation threads. OTUs are written to the filemyfile.swarms, and
OTU representatives are written tomyfile.representatives.fasta.

swarm -t 4 -f -w myfile.representatives.fasta < myfile.fasta > myfile.swarms

AUTHORS
Concept by Frédéric Mahé, implementation by Torbjørn Rognes.

CITATION
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. (2014) Swarm: robust and fast clustering method
for amplicon-based studies.PeerJ2:e593 <http://dx.doi.org/10.7717/peerj.593>

Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. (2015) Swarm v2: highly-scalable and high-reso-
lution amplicon clustering.PeerJ3:e1420 <http://dx.doi.org/10.7717/peerj.1420>

REPORTING BUGS
Submit suggestions and bug-reports at <https://github.com/torognes/swarm/issues>, send a pull request on
<https://github.com/torognes/swarm>, or compose a friendly or curmudgeonly e-mail to Frédéric Mahé
<mahe@rhrk.uni-kl.de> and Torbjørn Rognes <torognes@ifi.uio.no>.

AV A ILABILITY
The software is available from <https://github.com/torognes/swarm>

COPYRIGHT
Copyright (C) 2012, 2013, 2014, 2015 Frédéric Mahé & Torbjørn Rognes

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the License, or
any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
ev en the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program.If
not, see <http://www.gnu.org/licenses/>.

SEE ALSO
swipe, an extremely fast Smith-Waterman database search tool by Torbjørn Rognes (available from
<https://github.com/torognes/swipe>).

vsearch, an open-source re-implementation of the classic uclust clustering method (by Robert C. Edgar),
along with other amplicon filtering and searching tools.vsearch is implemented by Torbjørn Rognes and
documented by Frédéric Mahé, and is available at <https://github.com/torognes/vsearch>.

VERSION HISTORY
New features and important modifications ofswarm (short lived or minor bug releases are not mentioned):

v2.1.6released December 14, 2015
Version 2.1.6 fixes problems with older compilers that do not have the x86intrin.h header
file. It also fixes a bug in the output of seeds with the ‘-w‘ option when d>1.

v2.1.5released September 8, 2015
Version 2.1.5 fixes minor bugs.

v2.1.4released September 4, 2015
Version 2.1.4 fixes minor bugs in the swarm algorithm used ford = 1.

v2.1.3released August 28, 2015
Version 2.1.3 adds checks of numeric option arguments.

version 2.1.6 December 14, 2015 4

swarm(1) USER COMMANDS swarm(1)

v2.1.1released March 31, 2015
Version 2.1.1 fixes a bug with the fastidious option that caused it to ignore some connec-
tions between large and small OTUs.

v2.1.0released March 24, 2015
Version 2.1.0 marks the first official release of swarm v2.

v2.0.7released March 18, 2015
Version 2.0.7 writes abundance information in usearch style when using options -w
(--seeds) in combination with -z (--usearch-abundance).

v2.0.6released March 13, 2015
Version 2.0.6 fixes a minor bug.

v2.0.5released March 13, 2015
Version 2.0.5 improves the implementation of the fastidious option and adds options to
control memory usage of the Bloom filter (-y and -c).In addition, an option (-w) allows
to output OTU representatives sequences with updated abundances (sum of all abun-
dances inside each OTU). This version also enablesswarm to run withd = 0.

v2.0.4released March 6, 2015
Version 2.0.4 includes a fully parallelised implementation of the fastidious option.

v2.0.3released March 4, 2015
Version 2.0.3 includes a working implementation of the fastidious option, but only the
initial clustering is parallelized.

v2.0.2released February 26, 2015
Version 2.0.2 fixes SSSE3 problems.

v2.0.1released February 26, 2015
Version 2.0.1 is a development version that contains a partial implementation of the fas-
tidious option, but it is not usable yet.

v2.0.0released December 3, 2014
Version 2.0.0 is faster and easier to use, providing new output options (--internal-structure
and --log), new control options (--boundary, --fastidious, --no-otu-breaking), and built-in
OTU refinement (no need to use the python script anymore). When using default parame-
ters, a novel and considerably faster algorithmic approach is used, guaranteeingswarm’s
scalability.

v1.2.21released February 26, 2015
Version 1.2.21 is supposed to fix some problems related to the use of the SSSE3 CPU
instructions which are not always available.

v1.2.20released November 6, 2014
Version 1.2.20 presents a production-ready version of the alternative algorithm (option
-a), with optional built-in OTU breaking (option -n). That alternative algorithmic
approach (usable only withd = 1) is considerably faster than currently used clustering
algorithms, and can deal with datasets of 100 million unique amplicons or more in a few
hours. Of course, results are rigourously identical to the results previously produced with
swarm. That release also introduces new options to control swarm output (options -i and
-l).

v1.2.19released October 3, 2014
Version 1.2.19 fixes a problem related to abundance information when the sequence iden-
tifier includes multiple underscore characters.

v1.2.18released September 29, 2014
Version 1.2.18 reenables the possibility of reading sequences fromstdin if no file name is
specified on the command line. It also fixes a bug related to CPU features detection.

version 2.1.6 December 14, 2015 5

swarm(1) USER COMMANDS swarm(1)

v1.2.17released September 28, 2014
Version 1.2.17 fixes a memory allocation bug introduced in version 1.2.15.

v1.2.16released September 27, 2014
Version 1.2.16 fixes a bug in the abundance sort introduced in version 1.2.15.

v1.2.15released September 27, 2014
Version 1.2.15 sorts the input sequences in order of decreasing abundance unless they are
detected to be sorted already. When using the alternative algorithm for d = 1 it also sorts
all subseeds in order of decreasing abundance.

v1.2.14released September 27, 2014
Version 1.2.14 fixes a bug in the output with the --swarm_breaker option (-b) when using
the alternative algorithm (-a).

v1.2.12released August 18, 2014
Version 1.2.12 introduces an option --alternative-algorithm to use an extremely fast,
experimental clustering algorithm for the special cased = 1. Multithreading scalability of
the default algorithm has been noticeably improved.

v1.2.10released August 8, 2014
Version 1.2.10 allows amplicon abundances to be specified using the usearch style in the
sequence header (e.g. ">id;size=1") when the -z option is chosen.

v1.2.8released August 5, 2014
Version 1.2.8 fixes an error with the gap extension penalty. Previous versions used a gap
penalty twice as large as intended. That bug correction induces small changes in cluster-
ing results.

v1.2.6released May 23, 2014
Version 1.2.6 introduces an option --mothur to output clustering results in a format com-
patible with the microbial ecology community analysis software suite Mothur
(<http://www.mothur.org/>).

v1.2.5released April 11, 2014
Version 1.2.5 removes the need for a POPCNT hardware instruction to be present.swarm
now automatically checks whether POPCNT is available and uses a slightly slower soft-
ware implementation if not. Only basic SSE2 instructions are now required to run
swarm.

v1.2.4released January 30, 2014
Version 1.2.4 introduces an option --break-swarms to output all pairs of amplicons withd
differences to standard error. That option is used by the companion script
‘swarm_breaker.py‘ to refine swarm results. The syntax of the inline assembly code is
changed for compatibility with more compilers.

v1.2 released May 16, 2013
Version 1.2 greatly improves speed by using alignment-free comparisons of amplicons
based onk-mer word content. For each amplicon, the presence-absence of all possible
5-mers is computed and recorded in a 1024-bits vector. Vector comparisons are extremely
fast and drastically reduce the number of costly pairwise alignments performed by
swarm. While remaining exact, swarm 1.2 can be more than 100-times faster than
swarm 1.1, when using a single thread with a large set of sequences. The minor version
1.1.1, published just before, adds compatibility with Apple computers, and corrects an
issue in the pairwise global alignment step that could lead to sub-optimal alignments.

v1.1 released February 26, 2013
Version 1.1 introduces two new important options: the possibility to output clustering
results using the uclust output format, and the possibility to output detailed statistics on
each OTU. swarm 1.1 is also faster: new filterings based on pairwise amplicon sequence
lengths and composition comparisons reduce the number of pairwise alignments needed

version 2.1.6 December 14, 2015 6

swarm(1) USER COMMANDS swarm(1)

and speed up the clustering.

v1.0 released November 10, 2012
First public release.

version 2.1.6 December 14, 2015 7

