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Abstract

Classical categorical regression models such as the multinomial logit and proportional
odds models are shown to be readily handled by the vector generalized linear and additive
model (VGLM/VGAM) framework. Additionally, there are natural extensions, such as
reduced-rank VGLMs for dimension reduction, and allowing covariates that have values
specific to each linear/additive predictor, e.g., for consumer choice modeling. This article
describes some of the framework behind the VGAM R package, its usage and implemen-
tation details.

Keywords:˜categorical data analysis, Fisher scoring, iteratively reweighted least squares, multi-
nomial distribution, nominal and ordinal polytomous responses, smoothing, vector generalized
linear and additive models, VGAM R package.

1. Introduction

This is a VGAM vignette for categorical data analysis (CDA) based on Yee (2010a). Any
subsequent features (especially non-backward compatible ones) will appear here.

The subject of CDA is concerned with analyses where the response is categorical regardless of
whether the explanatory variables are continuous or categorical. It is a very frequent form of
data. Over the years several CDA regression models for polytomous responses have become
popular, e.g., those in Table 1. Not surprisingly, the models are interrelated: their foundation
is the multinomial distribution and consequently they share similar and overlapping properties
which modellers should know and exploit. Unfortunately, software has been slow to reflect
their commonality and this makes analyses unnecessarily difficult for the practitioner on
several fronts, e.g., using different functions/procedures to fit different models which does not
aid the understanding of their connections.

This historical misfortune can be seen by considering R functions for CDA. From the Com-
prehensive R Archive Network (CRAN, http://CRAN.R-project.org/) there is polr() (in
MASS; Venables and Ripley 2002) for a proportional odds model and multinom() (in nnet;
Venables and Ripley 2002) for the multinomial logit model. However, both of these can be
considered ‘one-off’ modeling functions rather than providing a unified offering for CDA. The
function lrm() (in rms; Harrell, Jr. 2009) has greater functionality: it can fit the proportional
odds model (and the forward continuation ratio model upon preprocessing). Neither polr()
or lrm() appear able to fit the nonproportional odds model. There are non-CRAN packages
too, such as the modeling function nordr() (in gnlm; Lindsey 2007), which can fit the pro-
portional odds, continuation ratio and adjacent categories models; however it calls nlm() and

http://CRAN.R-project.org/
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Quantity Notation VGAM family function

P (Y = j + 1)/P (Y = j) ζj acat()

P (Y = j)/P (Y = j + 1) ζRj acat(reverse = TRUE)

P (Y > j|Y ≥ j) δ∗j cratio()

P (Y < j|Y ≤ j) δ∗Rj cratio(reverse = TRUE)

P (Y ≤ j) γj cumulative()

P (Y ≥ j) γRj cumulative(reverse = TRUE)

log{P (Y = j)/P (Y = M + 1)} multinomial()

P (Y = j|Y ≥ j) δj sratio()

P (Y = j|Y ≤ j) δRj sratio(reverse = TRUE)

Table 1: Quantities defined in VGAM for a categorical response Y taking values 1, . . . ,M+1.
Covariates x have been omitted for clarity. The LHS quantities are ηj or ηj−1 for j = 1, . . . ,M
(not reversed) and j = 2, . . . ,M + 1 (if reversed), respectively. All models are estimated by
minimizing the deviance. All except for multinomial() are suited to ordinal Y .

the user must supply starting values. In general these R (R Development Core Team 2009)
modeling functions are not modular and often require preprocessing and sometimes are not
self-starting. The implementations can be perceived as a smattering and piecemeal in nature.
Consequently if the practitioner wishes to fit the models of Table 1 then there is a need to
master several modeling functions from several packages each having different syntaxes etc.
This is a hindrance to efficient CDA.

SAS (SAS Institute Inc. 2003) does not fare much better than R. Indeed, it could be considered
as having an excess of options which bewilders the non-expert user; there is little coherent
overriding structure. Its proc logistic handles the multinomial logit and proportional odds
models, as well as exact logistic regression (see Stokes et˜al. 2000, which is for Version 8
of SAS). The fact that the proportional odds model may be fitted by proc logistic, proc
genmod and proc probit arguably leads to possible confusion rather than the making of
connections, e.g., genmod is primarily for GLMs and the proportional odds model is not
a GLM in the classical Nelder and Wedderburn (1972) sense. Also, proc phreg fits the
multinomial logit model, and proc catmod with its WLS implementation adds to further
potential confusion.

This article attempts to show how these deficiencies can be addressed by considering the
vector generalized linear and additive model (VGLM/VGAM) framework, as implemented by
the author’s VGAM package for R. The main purpose of this paper is to demonstrate how the
framework is very well suited to many ‘classical’ regression models for categorical responses,
and to describe the implementation and usage of VGAM for such. To this end an outline of
this article is as follows. Section 2 summarizes the basic VGLM/VGAM framework. Section
3 centers on functions for CDA in VGAM. Given an adequate framework, some natural
extensions of Section 2 are described in Section 4. Users of VGAM can benefit from Section
5 which shows how the software reflects their common theory. Some examples are given in
Section 6. Section 7 contains selected topics in statistial computing that are more relevant
to programmers interested in the underlying code. Section 8 discusses several utilities and
extensions needed for advanced CDA modeling, and the article concludes with a discussion.
This document was run using VGAM 0.7-10 (Yee 2010b) under R2.10.0.

Some general references for categorical data providing background to this article include
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Agresti (2010), Agresti (2013), Fahrmeir and Tutz (2001), Leonard (2000), Lloyd (1999),
Long (1997), McCullagh and Nelder (1989), Simonoff (2003), Smithson and Merkle (2013)
and Tutz (2012). An overview of models for ordinal responses is Liu and Agresti (2005), and
a manual for fitting common models found in Agresti (2002) to polytomous responses with
various software is Thompson (2009). A package for visualizing categorical data in R is vcd
(Meyer et˜al. 2006, 2009).

2. VGLM/VGAM overview

This section summarizes the VGLM/VGAM framework with a particular emphasis toward
categorical models since the classes encapsulates many multivariate response models in, e.g.,
survival analysis, extreme value analysis, quantile and expectile regression, time series, bioas-
say data, nonlinear least-squares models, and scores of standard and nonstandard univariate
and continuous distributions. The framework is partially summarized by Table 2. More gen-
eral details about VGLMs and VGAMs can be found in Yee and Hastie (2003) and Yee and
Wild (1996) respectively. An informal and practical article connecting the general framework
with the software is Yee (2008).

2.1. VGLMs

Suppose the observed response y is a q-dimensional vector. VGLMs are defined as a model
for which the conditional distribution of Y given explanatory x is of the form

f(y|x;B, φ) = h(y, η1, . . . , ηM , φ) (1)

for some known function h(·), where B = (β1 β2 · · · βM ) is a p × M matrix of unknown
regression coefficients, and the jth linear predictor is

ηj = ηj(x) = β>j x =
p∑

k=1

β(j)k xk, j = 1, . . . ,M. (2)

Here x = (x1, . . . , xp)
> with x1 = 1 if there is an intercept. Note that (2) means that all the

parameters may be potentially modelled as functions of x. It can be seen that VGLMs are like
GLMs but allow for multiple linear predictors, and they encompass models outside the small
confines of the exponential family. In (1) the quantity φ is an optional scaling parameter
which is included for backward compatibility with common adjustments to overdispersion,
e.g., with respect to GLMs.

In general there is no relationship between q and M : it depends specifically on the model or
distribution to be fitted. However, for the ‘classical’ categorical regression models of Table 1
we have M = q − 1 since q is the number of levels the multi-category response Y has.

The ηj of VGLMs may be applied directly to parameters of a distribution rather than just to
a mean for GLMs. A simple example is a univariate distribution with a location parameter
ξ and a scale parameter σ > 0, where we may take η1 = ξ and η2 = log σ. In general,
ηj = gj(θj) for some parameter link function gj and parameter θj . For example, the adjacent
categories models in Table 1 are ratios of two probabilities, therefore a log link of ζRj or ζj is
the default. In VGAM, there are currently over a dozen links to choose from, of which any
can be assigned to any parameter, ensuring maximum flexibility. Table 5 lists some of them.
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η Model Modeling Reference
function

B>1 x1 + B>2 x2 (= B>x) VGLM vglm() Yee and Hastie (2003)

B>1 x1 +
p1+p2∑
k=p1+1

Hk f
∗
k(xk) VGAM vgam() Yee and Wild (1996)

B>1 x1 + Aν RR-VGLM rrvglm() Yee and Hastie (2003)

See Yee and Hastie (2003) Goodman’s RC grc() Goodman (1981)

Table 2: Some of the package VGAM and its framework. The vector of latent variables
ν = C>x2 where x> = (x>1 ,x

>
2 ).

VGLMs are estimated using iteratively reweighted least squares (IRLS) which is particularly
suitable for categorical models (Green 1984). All models in this article have a log-likelihood

` =
n∑

i=1

wi `i (3)

where the wi are known positive prior weights. Let xi denote the explanatory vector for the
ith observation, for i = 1, . . . , n. Then one can write

ηi = η(xi) =

 η1(xi)
...

ηM (xi)

 = B>xi =


β>1 xi

...

β>Mxi



=


β(1)1 · · · β(1)p

...
β(M)1 · · · β(M)p

xi =
(
β(1) · · · β(p)

)
xi. (4)

In IRLS, an adjusted dependent vector zi = ηi + W−1
i di is regressed upon a large (VLM)

model matrix, with di = wi ∂`i/∂ηi. The working weights Wi here are wiVar(∂`i/∂ηi)
(which, under regularity conditions, is equal to −wiE[∂2`i/(∂ηi ∂η

>
i )]), giving rise to the

Fisher scoring algorithm.

Let X = (x1, . . . ,xn)> be the usual n × p (LM) model matrix obtained from the formula

argument of vglm(). Given zi, Wi and X at the current IRLS iteration, a weighted multivari-
ate regression is performed. To do this, a vector linear model (VLM) model matrix XVLM is
formed from X and Hk (see Section 2.2). This is has nM rows, and if there are no constraints

then Mp columns. Then
(
z>1 , . . . ,z

>
n

)>
is regressed upon XVLM with variance-covariance

matrix diag(W−1
1 , . . . ,W−1

n ). This system of linear equations is converted to one large WLS
fit by premultiplication of the output of a Cholesky decomposition of the Wi.

Fisher scoring usually has good numerical stability because the Wi are positive-definite over
a larger region of parameter space than Newton-Raphson. For the categorical models in this
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article the expected information matrices are simpler than the observed information matrices,
and are easily derived, therefore all the families in Table 1 implement Fisher scoring.

2.2. VGAMs and constraint matrices

VGAMs provide additive-model extensions to VGLMs, that is, (2) is generalized to

ηj(x) = β(j)1 +
p∑

k=2

f(j)k(xk), j = 1, . . . ,M, (5)

a sum of smooth functions of the individual covariates, just as with ordinary GAMs (Hastie
and Tibshirani 1990). The fk = (f(1)k(xk), . . . , f(M)k(xk))> are centered for uniqueness, and
are estimated simultaneously using vector smoothers. VGAMs are thus a visual data-driven
method that is well suited to exploring data, and they retain the simplicity of interpretation
that GAMs possess.

An important concept, especially for CDA, is the idea of ‘constraints-on-the functions’. In
practice we often wish to constrain the effect of a covariate to be the same for some of the ηj
and to have no effect for others. We shall see below that this constraints idea is important
for several categorical models because of a popular parallelism assumption. As a specific
example, for VGAMs we may wish to take

η1 = β(1)1 + f(1)2(x2) + f(1)3(x3),

η2 = β(2)1 + f(1)2(x2),

so that f(1)2 ≡ f(2)2 and f(2)3 ≡ 0. For VGAMs, we can represent these models using

η(x) = β(1) +
p∑

k=2

fk(xk) = H1 β
∗
(1) +

p∑
k=2

Hk f
∗
k(xk) (6)

where H1,H2, . . . ,Hp are known full-column rank constraint matrices, f∗k is a vector contain-
ing a possibly reduced set of component functions and β∗(1) is a vector of unknown intercepts.
With no constraints at all, H1 = H2 = · · · = Hp = IM and β∗(1) = β(1). Like the fk, the f∗k
are centered for uniqueness. For VGLMs, the fk are linear so that

B> =

(
H1β

∗
(1)

∣∣∣∣∣ H2β
∗
(2)

∣∣∣∣∣ · · ·
∣∣∣∣∣ Hpβ

∗
(p)

)
(7)

for some vectors β∗(1), . . . ,β
∗
(p).

The XVLM matrix is constructed from X and the Hk using Kronecker product operations.
For example, with trivial constraints, XVLM = X⊗ IM . More generally,

XVLM =

(
(X e1)⊗H1

∣∣∣∣∣ (X e2)⊗H2

∣∣∣∣∣ · · ·
∣∣∣∣∣ (X ep)⊗Hp

)
(8)

(ek is a vector of zeros except for a one in the kth position) so that XVLM is (nM) × p∗

where p∗ =
∑p

k=1 ncol(Hk) is the total number of columns of all the constraint matrices.
Note that XVLM and X can be obtained by model.matrix(vglmObject, type = "vlm")
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and model.matrix(vglmObject, type = "lm") respectively. Equation 7 focusses on the
rows of B whereas 4 is on the columns.

VGAMs are estimated by applying a modified vector backfitting algorithm (cf. Buja et˜al.
1989) to the zi.

2.3. Vector splines and penalized likelihood

If (6) is estimated using a vector spline (a natural extension of the cubic smoothing spline
to vector responses) then it can be shown that the resulting solution maximizes a penalized
likelihood; some details are sketched in Yee and Stephenson (2007). In fact, knot selection
for vector spline follows the same idea as O-splines (see Wand and Ormerod 2008) in order
to lower the computational cost.

The usage of vgam() with smoothing is very similar to gam() (Hastie 2008), e.g., to fit a
nonparametric proportional odds model (cf. p.179 of McCullagh and Nelder 1989) to the
pneumoconiosis data one could try

R> pneumo <- transform(pneumo, let = log(exposure.time))

R> fit <- vgam(cbind(normal, mild, severe) ~ s(let, df = 2),

+ cumulative(reverse = TRUE, parallel = TRUE), data = pneumo)

Here, setting df = 1 means a linear fit so that df = 2 affords a little nonlinearity.

3. VGAM family functions

This section summarizes and comments on the VGAM family functions of Table 1 for a
categorical response variable taking values Y = 1, 2, . . . ,M + 1. In its most basic invokation,
the usage entails a trivial change compared to glm(): use vglm() instead and assign the
family argument a VGAM family function. The use of a VGAM family function to fit
a specific model is far simpler than having a different modeling function for each model.
Options specific to that model appear as arguments of that VGAM family function.

While writing cratio() it was found that various authors defined the quantity “continuation
ratio” differently, therefore it became necessary to define a “stopping ratio”. Table 1 defines
these quantities for VGAM.

The multinomial logit model is usually described by choosing the first or last level of the
factor to be baseline. VGAM chooses the last level (Table 1) by default, however that can be
changed to any other level by use of the refLevel argument.

If the proportional odds assumption is inadequate then one strategy is to try use a different
link function (see Section 5.2 for a selection). Another alternative is to add extra terms such
as interaction terms into the linear predictor (available in the S language; Chambers and
Hastie 1993). Another is to fit the so-called partial proportional odds model (Peterson and
Harrell 1990) which VGAM can fit via constraint matrices.

In the terminology of Agresti (2002), cumulative() fits the class of cumulative link models,
e.g., cumulative(link = probit) is a cumulative probit model. For cumulative() it was
difficult to decide whether parallel = TRUE or parallel = FALSE should be the default. In
fact, the latter is (for now?). Users need to set cumulative(parallel = TRUE) explicitly to
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fit a proportional odds model—hopefully this will alert them to the fact that they are making
the proportional odds assumption and check its validity (Peterson (1990); e.g., through a
deviance or likelihood ratio test). However the default means numerical problems can occur
with far greater likelihood. Thus there is tension between the two options. As a compromise
there is now a VGAM family function called propodds(reverse = TRUE) which is equivalent
to cumulative(parallel = TRUE, reverse = reverse, link = "logit").

By the way, note that arguments such as parallel can handle a slightly more complex syntax.
A call such as parallel = TRUE ~ x2 + x5 - 1 means the parallelism assumption is only
applied to X2 and X5. This might be equivalent to something like parallel = FALSE ~ x3

+ x4, i.e., to the remaining explanatory variables.

4. Other models

Given the VGLM/VGAM framework of Section 2 it is found that natural extensions are
readily proposed in several directions. This section describes some such extensions.

4.1. Reduced-rank VGLMs

Consider a multinomial logit model where p and M are both large. A (not-too-convincing)
example might be the data frame vowel.test in the package ElemStatLearn (see Hastie et˜al.
1994). The vowel recognition data set involves q = 11 symbols produced from 8 speakers
with 6 replications of each. The training data comprises 10 input features (not including
the intercept) based on digitized utterances. A multinomial logit model fitted to these data
would have B̂ comprising of p× (q− 1) = 110 regression coefficients for n = 8× 6× 11 = 528
observations. The ratio of n to the number of parameters is small, and it would be good to
introduce some parsimony into the model.

A simple and elegant solution is to represent B̂ by its reduced-rank approximation. To do
this, partition x into (x>1 ,x

>
2 )> and B = (B>1 B>2 )> so that the reduced-rank regression is

applied to x2. In general, B is a dense matrix of full rank, i.e., rank = min(M,p), and since
there are M × p regression coefficients to estimate this is ‘too’ large for some models and/or
data sets. If we approximate B2 by a reduced-rank regression

B2 = CA> (9)

and if the rank R is kept low then this can cut down the number of regression coefficients
dramatically. If R = 2 then the results may be biplotted (biplot() in VGAM). Here, C and
A are p2 ×R and M ×R respectively, and usually they are ‘thin’.

More generally, the class of reduced-rank VGLMs (RR-VGLMs) is simply a VGLM where B2

is expressed as a product of two thin estimated matrices (Table 2). Indeed, Yee and Hastie
(2003) show that RR-VGLMs are VGLMs with constraint matrices that are unknown and
estimated. Computationally, this is done using an alternating method: in (9) estimate A
given the current estimate of C, and then estimate C given the current estimate of A. This
alternating algorithm is repeated until convergence within each IRLS iteration.

Incidentally, special cases of RR-VGLMs have appeared in the literature. For example, a
RR-multinomial logit model, is known as the stereotype model (Anderson 1984). Another
is Goodman (1981)’s RC model (see Section 4.2) which is reduced-rank multivariate Poisson
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model. Note that the parallelism assumption of the proportional odds model (McCullagh and
Nelder 1989) can be thought of as a type of reduced-rank regression where the constraint
matrices are thin (1M , actually) and known.

The modeling function rrvglm() should work with any VGAM family function compatible
with vglm(). Of course, its applicability should be restricted to models where a reduced-rank
regression of B2 makes sense.

4.2. Goodman’s R× C association model

Let Y = [(yij)] be a n ×M matrix of counts. Section 4.2 of Yee and Hastie (2003) shows
that Goodman’s RC(R) association model (Goodman 1981) fits within the VGLM framework
by setting up the appropriate indicator variables, structural zeros and constraint matrices.
Goodman’s model fits a reduced-rank type model to Y by firstly assuming that Yij has a
Poisson distribution, and that

log µij = µ+ αi + γj +
R∑

k=1

aik cjk, i = 1, . . . , n; j = 1, . . . ,M, (10)

where µij = E(Yij) is the mean of the i-j cell, and the rank R satisfies R < min(n,M).

The modeling function grc() should work on any two-way table Y of counts generated by
(10) provided the number of 0’s is not too large. Its usage is quite simple, e.g., grc(Ymatrix,
Rank = 2) fits a rank-2 model to a matrix of counts. By default a Rank = 1 model is fitted.

4.3. Bradley-Terry models

Consider an experiment consists of nij judges who compare pairs of items Ti, i = 1, . . . ,M+1.
They express their preferences between Ti and Tj . Let N =

∑∑
i<j nij be the total number

of pairwise comparisons, and assume independence for ratings of the same pair by different
judges and for ratings of different pairs by the same judge. Let πi be the worth of item Ti,

P (Ti > Tj) = pi/ij =
πi

πi + πj
, i 6= j,

where “Ti > Tj” means i is preferred over j. Suppose that πi > 0. Let Yij be the number of
times that Ti is preferred over Tj in the nij comparisons of the pairs. Then Yij ∼ Bin(nij , pi/ij).
This is a Bradley-Terry model (without ties), and the VGAM family function is brat().

Maximum likelihood estimation of the parameters π1, . . . , πM+1 involves maximizing

M+1∏
i<j

(
nij
yij

)(
πi

πi + πj

)yij (
πj

πi + πj

)nij−yij
.

By default, πM+1 ≡ 1 is used for identifiability, however, this can be changed very easily.
Note that one can define linear predictors ηij of the form

logit

(
πi

πi + πj

)
= log

(
πi
πj

)
= λi − λj . (11)

The VGAM framework can handle the Bradley-Terry model only for intercept-only models;
it has

λj = ηj = log πj = β(1)j , j = 1, . . . ,M. (12)
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VGAM family function Independent parameters

ABO() p, q
MNSs() mS ,ms, nS
AB.Ab.aB.ab() p
AB.Ab.aB.ab2() p
AA.Aa.aa() pA
G1G2G3() p1, p2, f

Table 3: Some genetic models currently implemented and their unique parameters.

As well as having many applications in the field of preferences, the Bradley-Terry model has
many uses in modeling ‘contests’ between teams i and j, where only one of the teams can
win in each contest (ties are not allowed under the classical model). The packaging function
Brat() can be used to convert a square matrix into one that has more columns, to serve as
input to vglm(). For example, for journal citation data where a citation of article B by article
A is a win for article B and a loss for article A. On a specific data set,

R> journal <- c("Biometrika", "Comm.Statist", "JASA", "JRSS-B")

R> squaremat <- matrix(c(NA, 33, 320, 284, 730, NA, 813, 276,

+ 498, 68, NA, 325, 221, 17, 142, NA), 4, 4)

R> dimnames(squaremat) <- list(winner = journal, loser = journal)

then Brat(squaremat) returns a 1× 12 matrix.

Bradley-Terry model with ties

The VGAM family function bratt() implements a Bradley-Terry model with ties (no pref-
erence), e.g., where both Ti and Tj are equally good or bad. Here we assume

P (Ti > Tj) =
πi

πi + πj + π0
, P (Ti = Tj) =

π0
πi + πj + π0

,

with π0 > 0 as an extra parameter. It has

η = (log π1, . . . , log πM−1, log π0)
>

by default, where there are M competitors and πM ≡ 1. Like brat(), one can choose a
different reference group and reference value.

Other R packages for the Bradley-Terry model include BradleyTerry2 by H. Turner and D.
Firth (with and without ties; Firth 2005, 2008) and prefmod (Hatzinger 2009).

4.4. Genetic models

There are quite a number of population genetic models based on the multinomial distribution,
e.g., Weir (1996), Lange (2002). Table 3 lists some VGAM family functions for such.

For example the ABO blood group system has two independent parameters p and q, say.
Here, the blood groups A, B and O form six possible combinations (genotypes) consisting of
AA, AO, BB, BO, AB, OO (see Table 4). A and B are dominant over bloodtype O. Let p,
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Genotype AA AO BB BO AB OO
Probability p2 2pr q2 2qr 2pq r2

Blood group A A B B AB O

Table 4: Probability table for the ABO blood group system. Note that p and q are the
parameters and r = 1− p− q.

q and r be the probabilities for A, B and O respectively (so that p + q + r = 1) for a given
population. The log-likelihood function is

`(p, q) = nA log(p2 + 2pr) + nB log(q2 + 2qr) + nAB log(2pq) + 2nO log(1− p− q),

where r = 1− p− q, p ∈ ( 0, 1 ), q ∈ ( 0, 1 ), p+ q < 1. We let η = (g(p), g(r))> where g is the
link function. Any g from Table 5 appropriate for a parameter θ ∈ (0, 1) will do.

A toy example where p = pA and q = pB is

R> abodat <- data.frame(A = 725, B = 258, AB = 72, O = 1073)

R> fit <- vglm(cbind(A, B, AB, O) ~ 1, ABO, data = abodat)

R> coef(fit, matrix = TRUE)

logit(pA) logit(pB)

(Intercept) -1.33 -2.432

R> Coef(fit) # Estimated pA and pB

pA pB

0.2091 0.0808

The function Coef(), which applies only to intercept-only models, applies to gj(θj) = ηj the

inverse link function g−1j to η̂j to give θ̂j .

4.5. Three main distributions

Agresti (2002) discusses three main distributions for categorical variables: binomial, multi-
nomial, and Poisson (Thompson 2009). All these are well-represented in the VGAM pack-
age, accompanied by variant forms. For example, there is a VGAM family function named
mbinomial() which implements a matched-binomial (suitable for matched case-control stud-
ies), Poisson ordination (useful in ecology for multi-species-environmental data), negative
binomial families, positive and zero-altered and zero-inflated variants, and the bivariate odds
ratio model (binom2.or(); see Section 6.5.6 of McCullagh and Nelder 1989). The latter has
an exchangeable argument to allow for an exchangeable error structure:

H1 =

 1 0
1 0
0 1

 , Hk =

 1
1
0

 , k = 2, . . . , p, (13)

since, for data (Y1, Y2,x), logitP
(
Yj = 1

∣∣∣x) = ηj for j = 1, 2, and log ψ = η3 where ψ is the

odds ratio, and so η1 = η2. Here, binom2.or(zero = 3) by default meaning ψ is modelled
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as an intercept-only (in general, zero may be assigned an integer vector such that the value
j means ηj = β(j)1, i.e., the jth linear/additive predictor is an intercept-only). See the online
help for all of these models.

5. Some user-oriented topics

Making the most of VGAM requires an understanding of the general VGLM/VGAM frame-
work described Section 2. In this section we connect elements of that framework with the
software. Before doing so it is noted that a fitted VGAM categorical model has access to the

usual generic functions, e.g., coef() for

(
β̂
∗T
(1), . . . , β̂

∗T
(p)

)>
(see Equation 7), constraints()

for Hk, deviance() for 2 (`max − `), fitted() for µ̂i, logLik() for `, predict() for η̂i,
print(), residuals(..., type = "response") for yi − µ̂i etc., summary(), vcov() for
V̂ar(β̂), etc. The methods function for the extractor function coef() has an argument matrix
which, when set TRUE, returns B̂ (see Equation 1) as a p×M matrix, and this is particularly
useful for confirming that a fit has made a parallelism assumption.

5.1. Common arguments

The structure of the unified framework given in Section 2 appears clearly through the pool
of common arguments shared by the VGAM family functions in Table 1. In particular,
reverse and parallel are prominent with CDA. These are merely convenient shortcuts
for the argument constraints, which accepts a named list of constraint matrices Hk. For
example, setting cumulative(parallel = TRUE) would constrain the coefficients β(j)k in (2)
to be equal for all j = 1, . . . ,M , each separately for k = 2, . . . , p. That is, Hk = 1M . The
argument reverse determines the ‘direction’ of the parameter or quantity.

Another argument not so much used with CDA is zero; this accepts a vector specifying which
ηj is to be modelled as an intercept-only; assigning a NULL means none.

5.2. Link functions

Almost all VGAM family functions (one notable exception is multinomial()) allow, in theory,
for any link function to be assigned to each ηj . This provides maximum capability. If so then
there is an extra argument to pass in any known parameter associated with the link function.
For example, link = "logoff", earg = list(offset = 1) signifies a log link with a unit
offset: ηj = log(θj + 1) for some parameter θj (> −1). The name earg stands for “extra
argument”. Table 5 lists some links relevant to categorical data. While the default gives a
reasonable first choice, users are encouraged to try different links. For example, fitting a binary
regression model (binomialff()) to the coal miners data set coalminers with respect to the
response wheeze gives a nonsignificant regression coefficient for β(1)3 with probit analysis but
not with a logit link when η = β(1)1 + β(1)2 age + β(1)3 age2. Developers and serious users are
encouraged to write and use new link functions compatible with VGAM.

6. Examples

This section illustrates CDA modeling on three data sets in order to give a flavour of what is
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Link function g(θ) Range of θ

cauchit() tan(π(θ − 1
2)) (0, 1)

cloglog() loge{− loge(1− θ)} (0, 1)
fisherz() 1

2 loge{(1 + θ)/(1− θ)} (−1, 1)
identity() θ (−∞,∞)
logc() loge(1− θ) (−∞, 1)
loge() loge(θ) (0,∞)
logit() loge(θ/(1− θ)) (0, 1)
logoff() loge(θ +A) (−A,∞)
probit() Φ−1(θ) (0, 1)
rhobit() loge{(1 + θ)/(1− θ)} (−1, 1)

Table 5: Some VGAM link functions pertinent to this article.

available in the package.

6.1. Marital status data

We fit a nonparametric multinomial logit model to data collected from a self-administered
questionnaire administered in a large New Zealand workforce observational study conducted
during 1992–3. The data were augmented by a second study consisting of retirees. For
homogeneity, this analysis is restricted to a subset of 6053 European males with no missing
values. The ages ranged between 16 and 88 years. The data can be considered a reasonable
representation of the white male New Zealand population in the early 1990s, and are detailed
in MacMahon et˜al. (1995) and Yee and Wild (1996). We are interested in exploring how
Y = marital status varies as a function of x2 = age. The nominal response Y has four levels;
in sorted order, they are divorced or separated, married or partnered, single and widower. We
will write these levels as Y = 1, 2, 3, 4, respectively, and will choose the married/partnered
(second level) as the reference group because the other levels emanate directly from it.

Suppose the data is in a data frame called marital.nz and looks like

R> head(marital.nz, 4)

age ethnicity mstatus

1 29 European Single

2 55 European Married/Partnered

3 44 European Married/Partnered

4 53 European Divorced/Separated

R> summary(marital.nz)

age ethnicity mstatus

Min. :16.0 European :6053 Divorced/Separated: 349

1st Qu.:33.0 Maori : 0 Married/Partnered :4778

Median :43.0 Other : 0 Single : 811

Mean :43.8 Polynesian: 0 Widowed : 115
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3rd Qu.:52.0

Max. :88.0

We fit the VGAM

R> fit.ms <- vgam(mstatus ~ s(age, df = 3), multinomial(refLevel = 2),

+ data = marital.nz)

Once again let’s firstly check the input.

R> head(depvar(fit.ms), 4)

Divorced/Separated Married/Partnered Single Widowed

1 0 0 1 0

2 0 1 0 0

3 0 1 0 0

4 1 0 0 0

R> colSums(depvar(fit.ms))

Divorced/Separated Married/Partnered Single

349 4778 811

Widowed

115

This seems okay.

Now the estimated component functions f̂(s)2(x2) may be plotted with

R> # Plot output

R> mycol <- c("red", "darkgreen", "blue")

R> par(mfrow = c(2, 2))

R> plot(fit.ms, se = TRUE, scale = 12,

+ lcol = mycol, scol = mycol)

R> # Plot output overlayed

R> #par(mfrow=c(1,1))

R> plot(fit.ms, se = TRUE, scale = 12,

+ overlay = TRUE,

+ llwd = 2,

+ lcol = mycol, scol = mycol)

to produce Figure 1. The scale argument is used here to ensure that the y-axes have a
common scale—this makes comparisons between the component functions less susceptible to
misinterpretation. The first three plots are the (centered) f̂(s)2(x2) for η1, η2, η3, where

ηs = log(P (Y = t)/P (Y = 2)) = β(s)1 + f(s)2(x2), (14)

(s, t) = (1, 1), (2, 3), (3, 4), and x2 is age. The last plot are the smooths overlaid to aid
comparison.
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Figure 1: Fitted (and centered) component functions f̂(s)2(x2) from the NZ marital status
data (see Equation 14). The bottom RHS plot are the smooths overlaid.

It may be seen that the ±2 standard error bands about the Widowed group is particularly wide
at young ages because of a paucity of data, and likewise at old ages amongst the Singles. The
f̂(s)2(x2) appear as one would expect. The log relative risk of being single relative to being
married/partnered drops sharply from ages 16 to 40. The fitted function for the Widowed group
increases with age and looks reasonably linear. The f̂(1)2(x2) suggests a possible maximum
around 50 years old—this could indicate the greatest marital conflict occurs during the mid-
life crisis years!

The methods function for plot() can also plot the derivatives of the smooths. The call

R> plot(fit.ms, deriv=1, lcol=mycol, scale=0.3)

results in Figure 2. Once again the y-axis scales are commensurate.

The derivative for the Divorced/Separated group appears linear so that a quadratic compo-
nent function could be tried. Not surprisingly the Single group shows the greatest change;
also, f̂ ′(2)2(x2) is approximately linear till 50 and then flat—this suggests one could fit a
piecewise quadratic function to model that component function up to 50 years. The Widowed

group appears largely flat. We thus fit the parametric model

R> foo <- function(x, elbow = 50)

+ poly(pmin(x, elbow), 2)

R> clist <- list("(Intercept)" = diag(3),
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Figure 2: Estimated first derivatives of the component functions, f̂ ′(s)2(x2), from the NZ
marital status data (see Equation 14).

+ "poly(age, 2)" = rbind(1, 0, 0),

+ "foo(age)" = rbind(0, 1, 0),

+ "age" = rbind(0, 0, 1))

R> fit2.ms <-

+ vglm(mstatus ~ poly(age, 2) + foo(age) + age,

+ family = multinomial(refLevel = 2),

+ constraints = clist,

+ data = marital.nz)

Then

R> coef(fit2.ms, matrix = TRUE)

log(mu[,1]/mu[,2]) log(mu[,3]/mu[,2]) log(mu[,4]/mu[,2])

(Intercept) -2.692 -2.469 -9.5048

poly(age, 2)1 7.678 0.000 0.0000

poly(age, 2)2 -19.566 0.000 0.0000

foo(age)1 0.000 -103.820 0.0000

foo(age)2 0.000 36.198 0.0000

age 0.000 0.000 0.1025

confirms that one term was used for each component function. The plots from

R> par(mfrow = c(2, 2))

R> plotvgam(fit2.ms, se = TRUE, scale = 12,

+ lcol = mycol[1], scol = mycol[1], which.term = 1)

R> plotvgam(fit2.ms, se = TRUE, scale = 12,

+ lcol = mycol[2], scol=mycol[2], which.term = 2)

R> plotvgam(fit2.ms, se = TRUE, scale = 12,

+ lcol = mycol[3], scol = mycol[3], which.term = 3)
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Figure 3: Parametric version of fit.ms: fit2.ms. The component functions are now
quadratic, piecewise quadratic/zero, or linear.

are given in Figure 3 and appear like Figure 1.

It is possible to perform very crude inference based on heuristic theory of a deviance test:

R> deviance(fit.ms) - deviance(fit2.ms)

[1] 7.59

is small, so it seems the parametric model is quite reasonable against the original nonpara-
metric model. Specifically, the difference in the number of ‘parameters’ is approximately

R> (dfdiff <- df.residual(fit2.ms) - df.residual(fit.ms))

[1] 3.151

which gives an approximate p value of

R> pchisq(deviance(fit.ms) - deviance(fit2.ms), df = dfdiff, lower.tail = FALSE)

[1] 0.0619

Thus fit2.ms appears quite reasonable.

The estimated probabilities of the original fit can be plotted against age using
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Figure 4: Fitted probabilities for each class for the NZ male European marital status data
(from Equation 14).

R> ooo <- with(marital.nz, order(age))

R> with(marital.nz, matplot(age[ooo], fitted(fit.ms)[ooo, ],

+ type = "l", las = 1, lwd = 2, ylim = 0:1,

+ ylab = "Fitted probabilities",

+ xlab = "Age", # main="Marital status amongst NZ Male Europeans",

+ col = c(mycol[1], "black", mycol[-1])))

R> legend(x = 52.5, y = 0.62, # x="topright",

+ col = c(mycol[1], "black", mycol[-1]),

+ lty = 1:4,

+ legend = colnames(fit.ms@y), lwd = 2)

R> abline(v = seq(10,90,by = 5), h = seq(0,1,by = 0.1), col = "gray", lty = "dashed")

which gives Figure 4. This shows that between 80–90% of NZ white males aged between
their early 30s to mid-70s were married/partnered. The proportion widowed started to rise
steeply from 70 years onwards but remained below 0.5 since males die younger than females
on average.

6.2. Stereotype model

We reproduce some of the analyses of Anderson (1984) regarding the progress of 101 patients
with back pain using the data frame backPain from gnm (Turner and Firth 2007, 2009). The
three prognostic variables are length of previous attack (x1 = 1, 2), pain change (x2 = 1, 2, 3)
and lordosis (x3 = 1, 2). Like him, we treat these as numerical and standardize and negate
them. The output

R> # Scale the variables? Yes; the Anderson (1984) paper did (see his Table 6).

R> head(backPain, 4)
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x1 x2 x3 pain

1 1 1 1 same

2 1 1 1 marked.improvement

3 1 1 1 complete.relief

4 1 2 1 same

R> summary(backPain)

x1 x2 x3 pain

Min. :1.00 Min. :1.00 Min. :1.00 worse : 5

1st Qu.:1.00 1st Qu.:2.00 1st Qu.:1.00 same :14

Median :2.00 Median :2.00 Median :1.00 slight.improvement :18

Mean :1.61 Mean :2.07 Mean :1.37 moderate.improvement:20

3rd Qu.:2.00 3rd Qu.:3.00 3rd Qu.:2.00 marked.improvement :28

Max. :2.00 Max. :3.00 Max. :2.00 complete.relief :16

R> backPain <- transform(backPain, sx1 = -scale(x1), sx2 = -scale(x2), sx3 = -scale(x3))

displays the six ordered categories. Now a rank-1 stereotype model can be fitted with

R> bp.rrmlm1 <- rrvglm(pain ~ sx1 + sx2 + sx3, multinomial, data = backPain)

Then

R> Coef(bp.rrmlm1)

A matrix:

latvar

log(mu[,1]/mu[,6]) 1.0000

log(mu[,2]/mu[,6]) 0.3094

log(mu[,3]/mu[,6]) 0.3467

log(mu[,4]/mu[,6]) 0.5099

log(mu[,5]/mu[,6]) 0.1415

C matrix:

latvar

sx1 -2.628

sx2 -2.146

sx3 -1.314

B1 matrix:

log(mu[,1]/mu[,6]) log(mu[,2]/mu[,6]) log(mu[,3]/mu[,6])

(Intercept) -2.914 0.2945 0.5198

log(mu[,4]/mu[,6]) log(mu[,5]/mu[,6])

(Intercept) 0.3511 0.9026
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are the fitted A, C and B1 (see Equation 9) and Table 2) which agrees with his Table 6.
Here, what is known as “corner constraints” is used ((1, 1) element of A ≡ 1), and only the
intercepts are not subject to any reduced-rank regression by default. The maximized log-
likelihood from logLik(bp.rrmlm1) is −151.55. The standard errors of each parameter can
be obtained by summary(bp.rrmlm1). The negative elements of Ĉ imply the latent variable
ν̂ decreases in value with increasing sx1, sx2 and sx3. The elements of Â tend to decrease
so it suggests patients get worse as ν increases, i.e., get better as sx1, sx2 and sx3 increase.

A rank-2 model fitted with a different normalization

R> bp.rrmlm2 <- rrvglm(pain ~ sx1 + sx2 + sx3, multinomial, data = backPain, Rank = 2,

+ Corner = FALSE, Uncor = TRUE)

produces uncorrelated ν̂i = Ĉ
>
x2i. In fact var(lv(bp.rrmlm2)) equals I2 so that the latent

variables are also scaled to have unit variance. The fit was biplotted (rows of Ĉ plotted as
arrow; rows of Â plotted as labels) using

R> biplot(bp.rrmlm2, Acol = "blue", Ccol = "darkgreen", scores = TRUE,

+# xlim = c(-1, 6), ylim = c(-1.2, 4), # Use this if not scaled

+ xlim = c(-4.5, 2.2), ylim = c(-2.2, 2.2), # Use this if scaled

+ chull = TRUE, clty = 2, ccol = "blue")

to give Figure 5. It is interpreted via inner products due to (9). The different normalization
means that the interpretation of ν1 and ν2 has changed, e.g., increasing sx1, sx2 and sx3

results in increasing ν̂1 and patients improve more. Many of the latent variable points ν̂i are
coincidental due to discrete nature of the xi. The rows of Â are centered on the blue labels
(rather cluttered unfortunately) and do not seem to vary much as a function of ν2. In fact
this is confirmed by Anderson (1984) who showed a rank-1 model is to be preferred.

This example demonstrates the ability to obtain a low dimensional view of higher dimen-
sional data. The package’s website has additional documentation including more detailed
Goodman’s RC and stereotype examples.

7. Some implementation details

This section describes some implementation details of VGAM which will be more of interest
to the developer than to the casual user.

7.1. Common code

It is good programming practice to write reusable code where possible. All the VGAM family
functions in Table 1 process the response in the same way because the same segment of code
is executed. This offers a degree of uniformity in terms of how input is handled, and also for
software maintenance (Altman and Jackman (2010) enumerates good programming techniques
and references). As well, the default initial values are computed in the same manner based
on sample proportions of each level of Y .

7.2. Matrix-band format of wz
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Figure 5: Biplot of a rank-2 reduced-rank multinomial logit (stereotype) model fitted to the
back pain data. A convex hull surrounds the latent variable scores ν̂i (whose observation
numbers are obscured because of their discrete nature). The position of the jth row of Â is
the center of the label “log(mu[,j])/mu[,6])”.

The working weight matrices Wi may become large for categorical regression models. In
general, we have to evaluate the Wi for i = 1, . . . , n, and naively, this could be held in an
array of dimension c(M, M, n). However, since the Wi are symmetric positive-definite it
suffices to only store the upper or lower half of the matrix.

The variable wz in vglm.fit() stores the working weight matrices Wi in a special format
called the matrix-band format. This format comprises a n×M∗ matrix where

M∗ =
hbw∑
i=1

(M − i+ 1) =
1

2
hbw (2M − hbw + 1)

is the number of columns. Here, hbw refers to the half-bandwidth of the matrix, which is an
integer between 1 and M inclusive. A diagonal matrix has unit half-bandwidth, a tridiagonal
matrix has half-bandwidth 2, etc.

Suppose M = 4. Then wz will have up to M∗ = 10 columns enumerating the unique elements
of Wi as follows:

Wi =


1 5 8 10

2 6 9
3 7

4

 . (15)

That is, the order is firstly the diagonal, then the band above that, followed by the second
band above the diagonal etc. Why is such a format adopted? For this example, if Wi is
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diagonal then only the first 4 columns of wz are needed. If Wi is tridiagonal then only the
first 7 columns of wz are needed. If Wi is banded then wz needs not have all 1

2M(M + 1)
columns; only M∗ columns suffice, and the rest of the elements of Wi are implicitly zero.
As well as reducing the size of wz itself in most cases, the matrix-band format often makes
the computation of wz very simple and efficient. Furthermore, a Cholesky decomposition of
a banded matrix will be banded. A final reason is that sometimes we want to input Wi into
VGAM: if wz is M ×M × n then vglm(..., weights = wz) will result in an error whereas
it will work if wz is an n×M∗ matrix.

To facilitate the use of the matrix-band format, a few auxiliary functions have been written.
In particular, there is iam() which gives the indices for an array-to-matrix. In the 4 × 4
example above,

R> iam(NA, NA, M = 4, both = TRUE, diag = TRUE)

$row.index

[1] 1 2 3 4 1 2 3 1 2 1

$col.index

[1] 1 2 3 4 2 3 4 3 4 4

returns the indices for the respective array coordinates for successive columns of matrix-
band format (see Equation 15). If diag = FALSE then the first 4 elements in each vector
are omitted. Note that the first two arguments of iam() are not used here and have been
assigned NAs for simplicity. For its use on the multinomial logit model, where (Wi)jj =
wi µij(1 − µij), j = 1, . . . ,M , and (Wi)jk = −wi µijµik, j 6= k, this can be programmed
succinctly like

wz <- mu[, 1:M] * (1 - mu[, 1:M])

if (M > 1) {

index <- iam(NA, NA, M = M, both = TRUE, diag = FALSE)

wz <- cbind(wz, -mu[, index$row] * mu[, index$col])

}

wz <- w * wz

(the actual code is slightly more complicated). In general, VGAM family functions can be
remarkably compact, e.g., acat(), cratio() and multinomial() are all less than 120 lines
of code each.

8. Extensions and utilities

This section describes some useful utilities/extensions of the above.

8.1. Marginal effects

Models such as the multinomial logit and cumulative link models model the posterior prob-
ability pj = P (Y = j|x) directly. In some applications, knowing the derivative of pj with
respect to some of the xk is useful; in fact, often just knowing the sign is important. The
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function margeff() computes the derivatives and returns them as a p × (M + 1) × n array.
For the multinomial logit model it is easy to show

∂ pj(xi)

∂ xi
= pj(xi)

{
βj −

M+1∑
s=1

ps(xi)βs

}
, (16)

while for cumulative(reverse = FALSE) we have pj = γj − γj−1 = h(ηj) − h(ηj−1) where
h = g−1 is the inverse of the link function (cf. Table 1) so that

∂ pj(x)

∂ x
= h′(ηj)βj − h′(ηj−1)βj−1. (17)

The function margeff() returns an array with these derivatives and should handle any value
of reverse and parallel.

8.2. The xij argument

There are many models, including those for categorical data, where the value of an explanatory
variable xk differs depending on which linear/additive predictor ηj . Here is a well-known
example from consumer choice modeling. Suppose an econometrician is interested in peoples’
choice of transport for travelling to work and that there are four choices: Y = 1 for “bus”,
Y = 2 “train”, Y = 3 “car” and Y = 4 means “walking”. Assume that people only choose one
means to go to work. Suppose there are three covariates: X2 = cost, X3 = journey time, and
X4 = distance. Of the covariates only X4 (and the intercept X1) is the same for all transport
choices; the cost and journey time differ according to the means chosen. Suppose a random
sample of n people is collected from some population, and that each person has access to all
these transport modes. For such data, a natural regression model would be a multinomial
logit model with M = 3: for j = 1, . . . ,M , we have ηj =

log
P (Y = j)

P (Y = M + 1)
= β∗(j)1 + β∗(1)2 (xi2j − xi24) + β∗(1)3 (xi3j − xi34) + β∗(1)4 xi4, (18)

where, for the ith person, xi2j is the cost for the jth transport means, and xi3j is the journey
time of the jth transport means. The distance to get to work is xi4; it has the same value
regardless of the transport means.

Equation 18 implies H1 = I3 and H2 = H3 = H4 = 13. Note also that if the last response
category is used as the baseline or reference group (the default of multinomial()) then
xik,M+1 can be subtracted from xikj for j = 1, . . . ,M—this is the natural way xik,M+1 enters
into the model.

Recall from (2) that we had

ηj(xi) = β>j xi =
p∑

k=1

xik β(j)k. (19)

Importantly, this can be generalized to

ηj(xij) = β>j xij =
p∑

k=1

xikj β(j)k, (20)
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or writing this another way (as a mixture or hybrid),

ηj(x
∗
i ,x
∗
ij) = β∗Tj x

∗
i + β∗∗Tj x∗ij . (21)

Often β∗∗j = β∗∗, say. In (21) the variables in x∗i are common to all ηj , and the variables in
x∗ij have different values for differing ηj . This allows for covariate values that are specific to
each ηj , a facility which is very important in many applications.

The use of the xij argument with the VGAM family function multinomial() has very
important applications in economics. In that field the term“multinomial logit model” includes
a variety of models such as the “generalized logit model” where (19) holds, the “conditional
logit model” where (20) holds, and the “mixed logit model,” which is a combination of the
two, where (21) holds. The generalized logit model focusses on the individual as the unit of
analysis, and uses individual characteristics as explanatory variables, e.g., age of the person
in the transport example. The conditional logit model assumes different values for each
alternative and the impact of a unit of xk is assumed to be constant across alternatives,
e.g., journey time in the choice of transport mode. Unfortunately, there is confusion in the
literature for the terminology of the models. Some authors call multinomial() with (19) the
“generalized logit model”. Others call the mixed logit model the“multinomial logit model”and
view the generalized logit and conditional logit models as special cases. In VGAM terminology
there is no need to give different names to all these slightly differing special cases. They are all
still called multinomial logit models, although it may be added that there are some covariate-
specific linear/additive predictors. The important thing is that the framework accommodates
xij , so one tries to avoid making life unnecessarily complicated. And xij can apply in theory
to any VGLM and not just to the multinomial logit model. Imai et˜al. (2008) present another
perspective on the xij problem with illustrations from Zelig (Imai et˜al. 2009).

Using the xij argument

VGAM handles variables whose values depend on ηj , (21), using the xij argument. It is
assigned an S formula or a list of S formulas. Each formula, which must have M different
terms, forms a matrix that premultiplies a constraint matrix. In detail, (19) can be written
in vector form as

η(xi) = B>xi =
p∑

k=1

Hk β
∗
k xik, (22)

where β∗k =
(
β∗(1)k, . . . , β

∗
(rk)k

)>
is to be estimated. This may be written

η(xi) =
p∑

k=1

diag(xik, . . . , xik)Hk β
∗
k. (23)

To handle (20)–(21) we can generalize (23) to

ηi =
p∑

k=1

diag(xik1, . . . , xikM ) Hk β
∗
k

(
=

p∑
k=1

X∗(ik)Hk β
∗
k, say

)
. (24)

Each component of the list xij is a formula having M terms (ignoring the intercept) which
specifies the successive diagonal elements of the matrix X∗(ik). Thus each row of the constraint
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matrix may be multiplied by a different vector of values. The constraint matrices themselves
are not affected by the xij argument.

How can one fit such models in VGAM? Let us fit (18). Suppose the journey cost and time
variables have had the cost and time of walking subtracted from them. Then, using “.trn”
to denote train,

fit2 <- vglm(cbind(bus, train, car, walk) ~ Cost + Time + Distance,

fam = multinomial(parallel = TRUE ~ Cost + Time + Distance - 1),

xij = list(Cost ~ Cost.bus + Cost.trn + Cost.car,

Time ~ Time.bus + Time.trn + Time.car),

form2 = ~ Cost.bus + Cost.trn + Cost.car +

Time.bus + Time.trn + Time.car +

Cost + Time + Distance,

data = gotowork)

should do the job. Here, the argument form2 is assigned a second S formula which is used
in some special circumstances or by certain types of VGAM family functions. The model
has H1 = I3 and H2 = H3 = H4 = 13 because the lack of parallelism only applies to the
intercept. However, unless Cost is the same as Cost.bus and Time is the same as Time.bus,
this model should not be plotted with plotvgam(); see the author’s homepage for further
documentation.

By the way, suppose β∗(1)4 in (18) is replaced by β∗(j)4. Then the above code but with

fam = multinomial(parallel = FALSE ~ 1 + Distance),

should fit this model. Equivalently,

fam = multinomial(parallel = TRUE ~ Cost + Time - 1),

A more complicated example

The above example is straightforward because the variables were entered linearly. However,
things become more tricky if data-dependent functions are used in any xij terms, e.g., bs(),
ns() or poly(). In particular, regression splines such as bs() and ns() can be used to
estimate a general smooth function f(xij), which is very useful for exploratory data analysis.

Suppose we wish to fit the variable Cost with a smoother. This is possible with regression
splines and using a trick. Firstly note that

fit3 <- vglm(cbind(bus, train, car, walk) ~ ns(Cost) + Time + Distance,

multinomial(parallel = TRUE ~ ns(Cost) + Time + Distance - 1),

xij = list(ns(Cost) ~ ns(Cost.bus) + ns(Cost.trn) + ns(Cost.car),

Time ~ Time.bus + Time.trn + Time.car),

form2 = ~ ns(Cost.bus) + ns(Cost.trn) + ns(Cost.car) +

Time.bus + Time.trn + Time.car +

ns(Cost) + Cost + Time + Distance,

data = gotowork)
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will not work because the basis functions for ns(Cost.bus), ns(Cost.trn) and ns(Cost.car)

are not identical since the knots differ. Consequently, they represent different functions despite
having common regression coefficients.

Fortunately, it is possible to force the ns() terms to have identical basis functions by using a
trick: combine the vectors temporarily. To do this, one can let

NS <- function(x, ..., df = 3)

sm.ns(c(x, ...), df = df)[1:length(x), , drop = FALSE]

This computes a natural cubic B-spline evaluated at x but it uses the other arguments as well
to form an overall vector from which to obtain the (common) knots. Then the usage of NS()
can be something like

fit4 <- vglm(cbind(bus, train, car, walk) ~ NS(Cost.bus, Cost.trn, Cost.car)

+ Time + Distance,

multinomial(parallel = TRUE ~ NS(Cost.bus, Cost.trn, Cost.car)

+ Time + Distance - 1),

xij = list(NS(Cost.bus, Cost.trn, Cost.car) ~

NS(Cost.bus, Cost.trn, Cost.car) +

NS(Cost.trn, Cost.car, Cost.bus) +

NS(Cost.car, Cost.bus, Cost.trn),

Time ~ Time.bus + Time.trn + Time.car),

form2 = ~ NS(Cost.bus, Cost.trn, Cost.car) +

NS(Cost.trn, Cost.car, Cost.bus) +

NS(Cost.car, Cost.bus, Cost.trn) +

Time.bus + Time.trn + Time.car +

Cost.bus + Cost.trn + Cost.car +

Time + Distance,

data = gotowork)

So NS(Cost.bus, Cost.trn, Cost.car) is the smooth term for Cost.bus, etc. Furthermore,
plotvgam() may be applied to fit4, in which case the fitted regression spline is plotted against
its first inner argument, viz. Cost.bus.

One of the reasons why it will predict correctly, too, is due to “smart prediction” (Yee 2008).

Implementation details

The xij argument operates after the ordinary XVLM matrix is created. Then selected columns
of XVLM are modified from the constraint matrices, xij and form2 arguments. That is, from
form2’s model matrix XF2, and the Hk. This whole operation is possible because XVLM

remains structurally the same. The crucial equation is (24).

Other xij examples are given in the online help of fill() and vglm.control(), as well as
at the package’s webpage.

9. Discussion
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This article has sought to convey how VGLMs/VGAMs are well suited for fitting regression
models for categorical data. Its primary strength is its simple and unified framework, and
when reflected in software, makes practical CDA more understandable and efficient. Further-
more, there are natural extensions such as a reduced-rank variant and covariate-specific ηj .
The VGAM package potentially offers a wide selection of models and utilities.

There is much future work to do. Some useful additions to the package include:

1. Bias-reduction (Firth 1993) is a method for removing the O(n−1) bias from a maximum
likelihood estimate. For a substantial class of models including GLMs it can be for-
mulated in terms of a minor adjustment of the score vector within an IRLS algorithm
(Kosmidis and Firth 2009). One by-product, for logistic regression, is that while the
maximum likelihood estimate (MLE) can be infinite, the adjustment leads to estimates
that are always finite. At present the R package brglm (Kosmidis 2008) implements bias-
reduction for a number of models. Bias-reduction might be implemented by adding an
argument bred = FALSE, say, to some existing VGAM family functions.

2. Nested logit models were developed to overcome a fundamental shortcoming related
to the multinomial logit model, viz. the independence of irrelevant alternatives (IIA)
assumption. Roughly, the multinomial logit model assumes the ratio of the choice
probabilities of two alternatives is not dependent on the presence or absence of other
alternatives in the model. This presents problems that are often illustrated by the famed
red bus-blue bus problem.

3. The generalized estimating equations (GEE) methodology is largely amenable to IRLS
and this should be added to the package in the future (Wild and Yee 1996).

4. For logistic regression SAS’s proc logistic gives a warning if the data is completely
separate or quasi-completely separate. Its effects are that some regression coefficients
tend to ±∞. With such data, all (to my knowledge) R implementations give warnings
that are vague, if any at all, and this is rather unacceptable (Allison 2004). The safeBi-
naryRegression package (Konis 2009) overloads glm() so that a check for the existence
of the MLE is made before fitting a binary response GLM.

In closing, the VGAM package is continually being developed, therefore some future changes
in the implementation details and usage may occur. These may include non-backward-
compatible changes (see the NEWS file.) Further documentation and updates are available
at the author’s homepage whose URL is given in the DESCRIPTION file.
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