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Abstract

Modeling of and inference on multivariate data that have been measured in space, such
as temperature and pressure, are challenging tasks in environmental sciences, physics and
materials science. We give an overview over and some background on modeling with cross-
covariance models. The R package RandomFields supports the simulation, the parameter
estimation and the prediction in particular for the linear model of coregionalization, the
multivariate Matérn models, the delay model, and a spectrum of physically motivated
vector valued models. An example on weather data is considered, illustrating the use of
RandomFields for parameter estimation and prediction.

Keywords: multivariate geostatistics, bivariate Matérn model, linear model of coregionaliza-
tion, matrix-valued covariance function, multivariate random field, R, vector-valued field.

This vignette is based on Schlather, Malinowski, Menck, Oesting, and Strokorb (2014a).

1. Introduction

Spatial data very frequently have more than one component. In meteorology, for instance,
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temperature, rainfall and pressure are measured at the same locations at predefined instances
in time. Similarly, in order to estimate the spatial distribution of rainfall, data from rain
gauges are combined with radar data. In economy, to name a further example, price devel-
opments of goods are spatio-temporal data consisting of various components at each instant
of time and at each market.

Although these kinds of data are ubiquitous, multivariate spatial models are largely under-
developed and multivariate space-time models are unknown, except for simple constructions.
This paper deals with multivariate spatial data, only. We denote a random process on a subset
of Rd, d ≥ 1, with scalar values a univariate random field, whilst other authors denote such
a process already multivariate if d ≥ 2. Here, a multivariate random field is an Rm-valued
random process on a subset of Rd with m ≥ 2. Such fields are called multivariable in the
package gstat (Pebesma 2004).

The analysis and the modeling of data stemming from multivariate random fields have been
reported in the geostatistical literature since long, cf. Wackernagel (2003) and Chilès and
Delfiner (1999), for example. Recently, the subject of multivariate geostatistics has been taken
up and various new models have been suggested (Apanasovich and Genton 2010; Gneiting,
Kleiber, and Schlather 2010; Bevilacqua, Daley, Porcu, and Schlather 2013).

Even though several R packages (R Core Team 2013) like fields (Nychka, Furrer, and Sain
2013), geospt (Melo, Santacruz, Melo, and others 2012), SpatialTools (French 2014) or spTi-
mer (Bakar and Sahu 2013) address the simulation and inference for spatial data, it seems
that only the packages gstat (Pebesma 2004), multivator (Hankin 2012) and spBayes (Finley
and Banerjee 2013) can handle multivariate random fields in the above sense.

While spBayes mainly focuses on spatial regression models, multivator allows for inference
and prediction of multivariate data based on emulator techniques (Oakley 1999). The package
gstat provides several tools for prediction and model fitting and also allows for multi-Gaussian
sequential simulation. However, to the best of our knowledge, the package RandomFields
(Schlather et al. 2014b) is by now unique in its variety of tools and models for multivariate
spatial processes.

The paper is organized as follows. In Section 2, a summary of the theoretical background is
given. Section 3 discusses principles for analyzing and simulating multivariate random fields.
Section 4 offers an overview over multivariate and vector-valued covariance functions that are
implemented in RandomFields. Section 5 reconsiders the data analysis by Gneiting et al.
(2010). Section 6 concludes with a brief summary of other features of RandomFields that are
already available or are intended to be implemented.

2. Background: cross-covariance functions and cross-variograms

Throughout the paper, a second order m-variate random field on T ⊂ Rd denotes a collection
of real-valued random vectors Z(x) = (Z1(x), . . . , Zm(x)) indexed by x ∈ T with existing
second moments. For theoretical considerations it suffices to assume EZj(x) = 0 for all
x ∈ Rd and j = 1, . . . ,m. The cross-covariance function C : T × T → Rm×m is defined by

Cjk(x, y) = COV(Zj(x), Zk(y)), x, y ∈ T, j, k = 1, . . . ,m.
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The function C is positive definite, i.e., C(x, y) = C>(y, x) and

n∑
p=1

n∑
q=1

a>p C(xp, xq)aq ≥ 0 (1)

for all n ∈ N, x, y, x1, . . . , xn ∈ T and a1, . . . , an ∈ Rm. The cross-variogram γ : T × T →
Rm×m, is defined by

γjk(x, y) =
1

2
E(Zj(x)− Zj(y))(Zk(x)− Zk(y)), x, y ∈ T, j, k = 1, . . . ,m.

If the cross-covariance function C (the cross-variogram γ) depends on x and y only through
the distance vector x− y, then Z is called weakly stationary or just stationary (intrinsically
stationary). We then write C(h) and γ(h) as functions that depend only on one argument
h = x − y. Clearly, stationarity implies intrinsic stationarity. Further relations between
covariance functions and variograms exist, see Chilès and Delfiner (1999) and Schlather (2012),
for instance, and the references therein.

In the univariate case, (weak) isotropy of Z is uniquely defined and means that the function
C or γ is rotation invariant. In the multivariate case the notion of isotropy has different
interpretations. Assume that the bivariate field Z models temperature and pressure. Then Z
should be called isotropic if

C(x, y) = C(Ax,Ay) or γ(x, y) = γ(Ax,Ay) for all rotation matrices A ∈ Rd×d.

Assume now that Z models a vector field of directed quantities in Rd, e.g., wind speed in R2.

Then Z has necessarilym = d components and it should be called isotropic if Z(·) D= A>Z(A ·),
i.e.,

C(x, y) = A>C(Ax,Ay)A for all rotation matrices A ∈ Rd×d.

A similar definition holds for the variogram γ. We call the latter models isotropic vector-valued
models whilst the former ones are referred to as isotropic multivariate models.

3. Simulation and inference

Several methods for the simulation of univariate random fields in Rd exist, see Lantuéjoul
(2002) for an overview. The simulation of univariate random fields based on Cholesky de-
composition, see also SpatialTools, can be directly transferred to the multivariate case. As
the Cholesky decomposition currently reaches its limits with a matrix of about size 104×104,
only about 2500 locations can be modeled in a bivariate setup and about 1000 locations in
a trivariate setup. The circulant embedding method by Dietrich and Newsam (1993) and
Wood and Chan (1994) is extremely powerful for simulating on a regular grid in Rd when d is
small and the random field is stationary. Their algorithms are implemented in various pack-
ages, e.g., dvfBm (Coeurjolly 2009), fields, and stpp (Gabriel, Rowlingson, and Diggle 2013).
The method has been extended by Dietrich and Newsam (1996) and Chan and Wood (1999)
to the multivariate case. In RandomFields, the Cholesky decomposition and the circulant
embedding method suggested by Dietrich and Newsam (1996) are implemented also in the
multivariate case. Furthermore, an extended version of Matheron’s turning bands method
(Matheron 1973) for the multivariate case is implemented.
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Various methods exist to estimate the parameters of an intrinsically stationary random field.
Least squares methods are based on the variogram cloud or a binned version of it, and do not
require further assumptions on the fields (Cressie 1993). For example, the package gstat relies
mainly on these methods. The second often used method is the maximum likelihood (ML)
method which relies on the additional important assumption of the Gaussianity of the field.
Showing that the ML approach is not too far from an established approach in approximation
theory, Scheuerer (2011) gives some indication why ML often works well even when the
assumption of Gaussianity is violated. The ML method and its variants (geoR, Ribeiro Jr
and Diggle 2001, CompRandFld, Padoan and Bevilacqua 2013) is frequently implemented for
parametric inference on spatial data. For Gaussian random fields, this amounts to estimating
a parametrized trend and the covariance structure. Therefore, ML methods can be readily
extended to the multivariate case.

At least three different kinds of well known difficulties exist with the classical ML approach:
first, the number of data is rather limited as the multivariate Gaussian density function
involves the inverse of the covariance matrix, so that the calculation of the likelihood needs
of order N3 operations. There are various work-arounds, for instance, Markov random field
theory allows to work directly on the inverse matrix, i.e., the precision matrix, (Rue 2001;
Simpson, Lindgren, and Rue 2011). Composite likelihood approaches simplify the likelihood
function by additional assumptions, cf. Lindsay (1988). A second difficulty is that the number
of parameters increases rapidly with the number m of components resulting frequently in
likelihood functions with lots of local maxima. As numerical optimizers such as optim are not
always reliable in this case, RandomFields estimates a sequence of simpler models, starting
with the model that has independent components, ending up with the full set of parameters,
see Section 5 for an example. The price to be payed are rather long running times.

The third difficulty is the choice of the initial values of the numerical optimization algorithm
for maximizing the likelihood. Various strategies exist. In geoR, initial starting values can
be created by various methods and are then passed as an argument to the fitting procedure.
Others seem to use fixed values only (fields). Data based initial values are considered by
CompRandFld using a weighted moment estimator and by gstat extracting values from the
variogram cloud. Usually, the packages allow for an additional starting value given by the
user. RandomFields estimates variances and scales very roughly from the data and uses fixed
values for other parameters to perform several variants of the least squares fit. Afterwards it
uses the best parameter set of the least squares fits as initial values for the ML estimation.
Similar to the packages CompRandFld and fields, the package RandomFields recognizes sparse
matrices and uses the package spam (Furrer and Sain 2010) for calculating the likelihood.

Being also mathematically based on the inverse of the covariance matrix, spatial prediction
methods face similar problems as the ML approach (Chilès and Delfiner 1999). Work-arounds
that share the same idea with the composite likelihood approach, such as the neighbourhood
kriging (De Marsily 1984), have been suggested. Many packages exist that deal with krig-
ing, for instance, constrainedKriging (Hofer and Papritz 2011), DiceKriging (Roustant, Gins-
bourger, and Deville 2012) and geoR. The package gstat offers an enormous amount of variants
for kriging, including multivariate kriging for linear models of coregionalization (Goulard and
Voltz 1992). RandomFields allows for basic kriging tasks, such as simple kriging, ordinary
kriging and universal kriging, on a large variety of models.

A last, also well-known difficulty appears with earth data as only few packages like sspline
(Xie 2013) handle spherical data. Usually, the data are transformed in different ways to more
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convenient distances by the various packages. The packages gstat and fields use great circle
distances. Additionally, fields also considers the data as having fully 3-dimensional coordi-
nates, from which the usual Euclidean distances are calculated. The latter is also the case
in RandomFields. While the package fields approximates the earth by a ball, RandomFields
assumes an ellipsoid.

4. Models

Among the covariance models considered as the most important ones in geostatistics are
the Whittle-Matérn model (Stein 1999; Guttorp and Gneiting 2006), its special cases, the
exponential model and the Gaussian model, and the spherical model which has compact
support (Chilès and Delfiner 1999). Only a few packages allow for a wider spectrum of
models, for instance geoR. On the multivariate side, the packages gstat and spBayes allow for
some choice of multivariate models.

In the following, we describe the cross-covariance models and the cross-variogram models
that can be used within RandomFields. A comprehensive list of models is given by Table 1.
Multivariate models like the latent dimension model and the linear model of coregionalization
can be derived from a wide spectrum of univariate models, some of them being presented
along this section.

The pieces of code given suffice to produce all the pictures as presented if the following three
options

R> RFoptions(seed = 0, height = 4)

are set once, at the very beginning. The first option sets the seed for every subsequent
simulation to 0. The second one sets the height of a single figure in the graphical display to 4
and indicates also that the aspect ratio of the figure will be calculated internally. The third
one has the effect that a new window is opened for each plot.

4.1. Multivariate models

The most commonly used model for a multivariate process Z = (Z1, . . . , Zm)> is probably
the linear model of coregionalization (Goulard and Voltz 1992), which is also offered by gstat.
Here, each component Zi is a linear combination

∑k
j=1mijYj of independent, latent univariate

processes Yj and M = (mij) ∈ Rm×k is an arbitrary matrix. Writing Mj = (m1j , . . . ,mmj)
>

we have

Z =

k∑
j=1

MjYj .

The cross-covariance function of Z equals MCM> where C is a diagonal matrix containing
the covariance functions of the univariate processes Yj . Obviously, the vector of independent
processes Y = (Y1, . . . , Yk) might be replaced by any arbitrary second order process Y , so that
C can be replaced by any arbitrary k × k cross-covariance function. The function RMmatrix

in RandomFields allows for this generality. The parameter k must be at most 10. To consider
an example, let k = 2,

M1 =

(
0.9
0.6

)
, M2 =

( √
0.19
0.8

)
,
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Name Description Particularities

Stationary and isotropic multivariate models
RMbiwm bivariate Whittle-Matérn model modeling differentiability
RMbigneiting bivariate Gneiting model finite support
RMparswm multivariate Whittle-Matérn model modeling differentiability

Other multivariate models
RMdelay bivariate delay effect model anisotropic
RMexponential functional exp operator
RMmatrix matrix multiplication operator
RMschur element-wise product operator
RMmqam multivariate quasi-arithmetic mean operator

Vector-valued models
RMcurlfree curl free vector-valued field operator
RMdivfree divergence free vector-valued field operator
RMkolmogorov Kolmogorov’s model of turbulence isotropic variogram
RMtbm turning bands operator operator
RMvector combining RMcurlfree and RMdivfree operator

Table 1: Multivariate and vector-valued models implemented in RandomFields.

and Y1, Y2 be independent univariate Gaussian random fields with Whittle-Matérn covariance
function

Wν(h) = 21−νΓ(ν)−1‖h‖νKν(‖h‖), h ∈ Rd.

Here, K is a modified Bessel function, Γ the Gamma function, and ν > 0 a smoothness para-
meter. The values of M1 and M2 imply that all the variables have variance 1. This model
can be defined in RandomFields as follows, see Figure 1 for a realization:

R> M1 <- c(0.9, 0.6)

R> M2 <- c(sqrt(0.19), 0.8)

R> model <- RMmatrix(M = M1, RMwhittle(nu = 0.3)) +

+ RMmatrix(M = M2, RMwhittle(nu = 2))

R> x <- y <- seq(-10, 10, 0.3)

R> simu <- RFsimulate(model, x, y)

R> plot(simu)

In particular, ν takes here the value 0.3 and 2, respectively. Note that, in RandomFields, all
commands that define models start with ‘RM’ whilst functions start with ’RF’. The models in
RandomFields mostly include more parameters than given here. These parameters are set to
standard values if they are not given. For instance, the standard value for variance and scale
is 1.

Wackernagel (2003) suggests a bivariate delay effect model of the form

C11(h) = C22(h) = C0(h), C12(h) = C0(h+ s), C21(h) = C0(h− s),

where C0 is an arbitrary univariate stationary covariance function and s ∈ Rd. Here, the
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Figure 1: Simulation of a bivariate linear model of coregionalization.

components of the corresponding random fields experience a pure shift, see Figure 2. The
corresponding code is

R> model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 4))

R> simu <- RFsimulate(model, x, y)

R> plot(simu, zlim = 'joint')

Here, the shift equals s = (4, 4). The underlying Gaussian random field possesses the so-called
stable covariance model, also called power exponential model,

C0(h) = exp(−(‖h‖/S)α)

with scale parameter S = 2 and shape parameter α = 1.9. The parameter zlim that is
well-known from the function image allows here for further options. Both, the value ’joint’

and a simple two-dimensional vector fix the same range for all images. A matrix-valued zlim

is able to determine a separate range for each column of the plot.

The delay model can be extended to an (m + 1)-variate model as well as to a superposition
of different shifts:

C(h) =

(
k∑

κ=1

C0,κ(h− sκ,i + sκ,j)

)
i,j=0,...,m

(2)

where C0,κ are univariate covariance functions, sκ,i ∈ Rd and sκ,0 = 0. Even for k = 2 and
C0,1 = C0,2 the delays cannot be recovered by visual inspection, see Figure 3. Here, the above
model has been replaced by

R> model <- RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(0, 4)) +

+ RMdelay(RMstable(alpha = 1.9, scale = 2), s = c(4, 0))

The contour plot for the covariance function has been obtained by
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Figure 2: Simulation of Wackernagel’s (2003) delay effect model. Here, the shift s equals
s = (4, 4).

R> plot(model, dim = 2, xlim = c(-5, 5), main = "Covariance function",

+ cex = 1.5, col = "brown")

The generalized model given by Equation 2 is implemented in RandomFields for k ≤ 10.

A third basic construction principle is the latent dimension model (Apanasovich and Genton
2010). Here, additional spatial dimensions serve as a source for the multivariate components:

Zi(x) = Z0(x, zi), x ∈ Rd, i = 1, . . . ,m,

for a random field Z0 in Rd+k and vectors zi ∈ Rk. An example is given in Figure 4, where
m = d = 2, k = 1, z1 = 0 and z2 = 1,

R> model <- RMgencauchy(alpha = 1.5, beta = 3)

R> simu <- RFsimulate(model, x, y, z = c(0, 1))

R> plot(simu, MARGIN.slices = 3, n.slices = 2)

Here, the covariance function of Z0 is a generalized Cauchy model (Gneiting and Schlather
2004),

C(h) = (1 + ‖h‖α)−β/α

with parameter α = 1.5 and β = 3. The argument MARGIN.slices gives the latent dimension
d+ k. The argument n.slices equals m if we are interested in a m-variate field. The slices
are equally distributed on a grid given for the latent dimension. As this plotting technique of
slices is independent of any theory on latent dimensions the names of the arguments refer to
the technical aspect only.

The random fields for the different variables are visually similar for all models given here. In
particular, the paths of all components show the same degree of smoothness. The multivariate
quasi-arithmetic mean model by Porcu, Mateu, and Christakos (2009),

Cij(h) = ϕ

(√
θ(ϕ−1(C0,i(h)))2 + (1− θ)(ϕ−1(C0,j(h)))2

)
, i, j = 1, . . . ,m,
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Figure 3: Bivariate generalized delay effect model according to Equation 2: simulation (top)
and contour plots for the components of the corresponding matrix-valued covariance function
(bottom).
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Figure 4: Simulation of the latent dimension model.

exhibits similar limitations. Here the C0,i are arbitrary univariate covariance functions, ϕ is
a completely monotone function (Berg, Christensen, and Ressel 1984; Schilling, Song, and
Vondracek 2010) and ϕ−1 is its inverse.

Gneiting et al. (2010) present a multivariate extension of the Whittle-Matérn model Wν . Let
Cij(h) = (cijWνij (h/sij))i,j=1,...,m with cij = cji ∈ R, cii ≥ 0, νij = νji > 0 and sij = sji > 0
for i, j = 1, . . . ,m. Let C = (Cij)i,j=1,...,m. If m = 2 then C is a cross-covariance function if
and only if

c12 = ρred

(
c11c22G12

sd11s
d
22

s2d12
inf
t≥0

(1 + t2/s212)
2ν12+d∏2

i=1(1 + t2/s2ii)
νii+d/2

)1/2

for some ρred ∈ [−1, 1] and

Gij =
Γ(νii + d/2)Γ(νjj + d/2)Γ(νij)

2

Γ(νii)Γ(νjj)Γ(νij + d/2)2
.

Gneiting et al. (2010) show that the right-hand side of the above equality is 0, i.e., c12 is
necessarily 0 if and only if ν12 <

1
2(ν11+ν22). Hence, we may introduce νred = 2ν12/(ν11+ν22)

which must be greater than or equal to 1 to have dependent components. Figure 5 gives an
illustration obtained by the following code:

R> model <- RMbiwm(nudiag = c(1, 2), nured = 1, rhored = 1, cdiag = c(1, 5),

+ s = c(1, 1, 2))

R> simu <- RFsimulate(model, x, y)

R> plot(simu)

i.e., in the above model we have

ν11 = 1, ν22 = 2, ν12 = 1.5, ρred = 1, c11 = 1, c22 = 5, s11 = 1, s12 = 1, s22 = 2.
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Figure 5: Simulation of the bivariate Whittle-Matérn model.

For the general m-variate case, Gneiting et al. (2010) give a sufficient condition for C being
a cross-covariance model,

sij = s > 0, νij =
1

2
(νii + νjj) and cij =

√
Gij for all i, j = 1, . . . ,m. (3)

The multivariate model for three or more variables is available in RandomFields by the func-
tion RMparswm. The parsimonious model K introduced in Gneiting et al. (2010) allows for
more flexibility, Kij = ρijCij where C is given by the equalities in Equation 3 and ρ is an
arbitrary covariance matrix. This generalization is implemented by the model RMparswmX
defined as

R> RMparswmX <- function(nudiag, rho, var, scale, Aniso, proj) {

+ RMschur(M = rho, RMparswm(nudiag, var, scale, Aniso, proj))

+ }

Here, RMschur defines the Schur product between two matrices, here ρ and C(h) for any fixed
value of h.

Anisotropic models can be defined through the argument Aniso. For instance, the code

R> A1 <- RMangle(angle = pi / 4, diag = c(0.1, 0.5))

R> A2 <- RMangle(angle = 0, diag = c(0.1, 0.5))

R> model <- RMmatrix(M = M1, RMgengneiting(kappa = 0, mu = 2, Aniso = A1)) +

+ RMmatrix(M = M2, RMgengneiting(kappa = 3, mu = 2, Aniso = A2))

R> simu <- RFsimulate(model, x, y)

R> plot(simu)

defines an anisotropic model of coregionalization. Here, M1 and M2 are defined as above, angle
gives the clockwise rotation and diag the inverse of the stretch factors in the new directions,
cf. Figure 6. The covariance model RMgengneiting refers to the Gneiting class (Gneiting
1999; Wendland 2005), where kappa denotes a parameter for the differentiability of the model



12 RandomFields: Multivariate Fields

Figure 6: Simulation of an anisotropic model of coregionalization.

and mu denotes an additional form parameter. These models have compact support. For
κ = 0 and κ = 3 they are defined as

C(h) = (1− ‖h‖)βI(‖h‖ ≤ 1)

and

C(h) = (1 + β‖h‖+ (2β2 − 3)‖h‖2/5 + (β2 − 4)β‖h‖3/15)(1− ‖h‖)βI(‖h‖ ≤ 1),

respectively. Here, β = µ+ 2κ+ 1/2 and I(‖h‖ ≤ 1) is the indicator function.

Finally, Bevilacqua et al. (2013) derive multivariate models with compact support based on
the Gneiting class. The bivariate model is available as RMbigneiting.

4.2. Vector-valued models

Vector fields are used to describe fluxes of liquids or gases in fluid mechanics (Patankar 1980;
Chorin and Marsden 1990), as well as fields of forces, e.g., electro-magnetic fields (Stratton
2007) or, more generally, as gradients of potentials (Kellog 1953).

Stochastic vector fields appear naturally within Kolmogorov’s theory of turbulent flows (Pope
2000, Section 6.2). Here, micro-fluctuations are described by an intrinsically stationary,
isotropic vector field, given by the variogram γ,

γij(h) = ‖h‖2/3
(

4

3
δij −

1

3

hihj
‖h‖2

)
, h ∈ R3. (4)

Here δij = 1 for i = j and δij = 0, otherwise. It is well-known that the marginal distributions
in a turbulent flow are not Gaussian.

Let F = (F1, . . . , Fd) be a vector field on Rd. The curl ∇ × F is defined as ∇ × F =
∂F2/∂x1 − ∂F1/∂x2 if d = 2 and as

∇× F =

(
∂F3

∂x2
− ∂F2

∂x3

)
e1 +

(
∂F1

∂x3
− ∂F3

∂x1

)
e2 +

(
∂F2

∂x1
− ∂F1

∂x2

)
e3
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if d = 3. Here, the ei are the canonic unit vectors. The divergence ∇ · F is given as

∇ · F =
d∑
i=1

∂Fi
∂xi

.

An important statement, not only for the theory of turbulence, is the Helmholtz decomposi-
tion: Under mild regularity assumptions, a vector field F in three dimensions can be uniquely
decomposed into a curl free vector field F c, i.e.,

∇× F c = 0,

and a divergence free vector field F d, i.e.,

∇ · F d = 0

such that F = F c + F d (Sagaut and Cambon 2008). A curl free vector field F c can either
be interpreted as the flux of an incompressible liquid that is verbally driven by sinks and
sources, or it describes a fluid that is compressible and liquid ’disappears’ if it is compressed.
The absolute value of the divergence ∇ · F gives the strength of the sinks and sources, where
the sign determines whether it is a sink or a source. Divergence free vector fields describe
vortices and magnetic fields. The direction of the curl ∇×F gives the axis of the vortex and
the norm of the curl its strength.

Stationary and non-stationary Gaussian random fields that are divergence free or curl free
(in the mean square sense, hence pathwise) can be easily constructed from a sufficiently often
differentiable univariate covariance function, C0 say, cf. Matheron (1972, 1973), for instance.
For simplicity, let C0 be translation invariant. Then,

Cd(h) = (−∆E +∇∇>)C0(h)

is the cross-covariance function of a stationary divergence free random field and

Cc(h) = (−∇∇>)C0(h)

is the cross-covariance function of a curl free random field. Here, E denotes the identity
matrix and ∆ denotes the Laplace operator. Scheuerer and Schlather (2012) show that if a
vector-valued random field on R2 is divergence free or curl free or a vector-valued random
field on R3 is curl free, then their cross-covariance functions have been obtained by essentially
the above construction.

The curl free models, the divergence free models, and Kolmogorov’s cross-variogram have been
implemented in RandomFields. The covariance model RMcurlfree defines random fields in
R2 that have four components: the first component is the (random) potential field given
by C0, the next two components give the derived (curl free) vector field, whereas the last
component gives the field of sinks and sources of the vector field, i.e., the divergence of the
vector field. In fact, due to the included field of sinks and sources, whose covariance function
equals ∆2C0, the covariance function C0 must be at least four times differentiable. Random
fields simulated with RMdivfree have also four components that can be interpreted in a
similar way, the last component being here the curl of the respective divergence free vector
field. Figure 7 illustrates such a four-variate random field. The code is
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R> model <- RMcurlfree(RMmatern(nu = 5), scale = 4)

R> simu <- RFsimulate(model, x, y)

R> plot(simu, select.variables = list(1, 2 : 3, 4))

R> plot(model, dim = 2, xlim = c(-3, 3), main = "", cex = 2.3, col = "brown")

Here, plot has the additional argument select.variables, by which the user chooses the
components to be plotted and the way they are plotted. If select.variables is not given
then plot plots all components separately. If select.variables is a list, then any component
of the list should be a scalar or a vector and is plotted in a separate figure. If an element of
the list is a scalar, an image is created. If the element is a bivariate vector a vector field is
created and if the element is a trivariate vector, an image is plotted for the first component,
and, additionally, a vector field is shown given by the subsequent two components.

The model RMvector allows combinations of a divergence free and a curl free spatial or space-
time random field

C(h, t) = (−0.5(a+ 1)∆ + a∇∇>)C0(h, t), h ∈ Rd, t ∈ R, d = 2, 3,

where the ∇-operators and the Laplace operator act on the spatial components only and a ∈
[−1, 1]. The model is parametrized in a way such that a = −1 corresponds to a curl free field
and a = 1 to a divergence free field. The corresponding random field is bivariate and contains
the vectors only. Here, the covariance function C0 must be only twice differentiable in the
spatial component since the field of sources and sinks or curls is not included. Finally, Figure 8
shows an intrinsically stationary Gaussian vector field with Kolmogorov’s variogram, which
has been obtained by results=tex x <- y <- seq(-2, 2, len = 20) model <- RMkolmogorov()
simu <- RFsimulate(model, x, y, z = 1) plot(simu, select.variables = list(1 : 2), col = c(”red”))
plot(model, dim = 3, xlim = c(-3, 3), MARGIN = 1 : 2, cex = 2.3, fixed.MARGIN = 1.0,
main = ””, col = ”brown”) Here, MARGIN gives the two coordinate directions that should be
plotted if the dimension d is greater than 2. The argument fixed.MARGIN gives the values of
the remaining coordinates, here one coordinate, that are kept fix. In fact, fixed.MARGIN =

0.0, which is the default, does not yield very illuminating results, cf. Equation 4, so that we
have chosen fixedMARGIN = 1.0.

5. Example: weather data

The data set considered here gives the difference between both the pressure and the temper-
ature at 157 locations in the United States measured at a certain time instance and their
predictions 48 hours ago. As in Gneiting et al. (2010) we assume that the expectation of the
differences is zero, and refer to data(weather) for details.

We consider first a simplified version of the bivariate Whittle-Matérn model from Section 4.1
where νred is set to 1 and the scale s11 = s12 = s22 is the same for all entries in the cross
covariance. A bivariate nugget effect with independent components is added:

R> nug <- RMmatrix(M = matrix(nc = 2, c(NA, 0, 0, NA)), RMnugget())

R> pars.model <- nug + RMbiwm(nudiag = c(NA, NA), scale = NA,

+ cdiag = c(NA, NA), rhored = NA)

This model is called ‘parsimonious model’ in Gneiting et al. (2010). We transform the earth
coordinates to Euclidean distances before performing the analysis:
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Figure 7: Simulation of a curl free vector field. Top left: potential field (variable 1); top
center: the corresponding curl free vector field (variables 2/3) is given by the arrows whose
length can be visibly inspected by comparing them to the above arrow which represents a
vector of length 2; top right: the field of sinks and sources (variable 4), i.e., the divergence of
the vector field in the top center; bottom: contour plots of the covariance function for these
variables 1-4.
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Figure 8: Kolmogorov’s model of turbulence. The top picture shows the vector field of the
first two components of a simulated three-dimensional vector field at the locations where the
third coordinate is kept fixed. Their length can be visibly inspected by comparing them to the
above arrow which represents a vector of length 2. The bottom pictures show the variogram
values between all components at the locations where the third component is fixed to the
value 1.
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R> data(weather)

R> Dist.mat <- as.vector(RFearth2dist(weather[ , 3 : 4]))

The function RFfit recognizes all parameters that have the value NA, and estimates them
through ML. Fitting the parsimonious model yields

R> PT <- weather[ , 1 : 2]

R> pars <- RFfit(pars.model, distances = Dist.mat, dim = 3, data = PT)

Note: There are strong indications that the model might be overparametrised

or that the bounds for the variables are too wide. Try narrower lower and

upper bounds for the variables in the latter case. One of the critical

parameters is 'lowerbound_var_factor' whose value (10000)

might be reduced.

Note: There are very strong indications that the model might be overparametrised

or that the bounds for the variables are too wide. Try narrower lower and

upper bounds for the variables in the latter case. One of the critical

parameters is 'lowerbound_var_factor' whose value (10000)

might be reduced.

Note: There are strong indications that the model might be overparametrised

or that the bounds for the variables are too wide. Try narrower lower and

upper bounds for the variables in the latter case. One of the critical

parameters is 'lowerbound_var_factor' whose value (10000)

might be reduced.

R> print(pars)

Internal variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 69.633411 0.01922079 96.108534 1.5602533 0.58651829

sd 7.125320 0.02518448 26.930517 0.5263959 0.08361192

lower 1.377946 0.01922079 0.399673 0.1000000 0.10000000

upper 616.236201 8.59579842 4668.895578 4.0000000 4.00000000

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored

value 6.716103e+04 6.957985e+00 -0.5822896

sd 1.986175e+04 1.339287e+00 0.1117433

lower 1.898735e+00 3.694388e-04 -0.9900000

upper 3.797471e+05 7.388775e+01 0.9900000

User's variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 69.633411 0.01922079 96.10853 1.5602533 0.58651829

sd 7.102884 0.18158245 26.59207 0.5051598 0.08366761

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored
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value 67161.03 6.957985 -0.5822896

sd Inf 1.297093 0.1051021

#variab loglikelihood AIC

8.000 -1265.737 2547.474

Note that the (internal) fitted variable 'matrix.M.2' is close to or on the effective lower boundary.

Hence the gradient of the likelihood function might not be zero and none of the

reported 'sd' values might be reliable.

The main part is table below User’s variables. Here, the rows deliver the estimated values
and their standard deviations, respectively. Each column name indicates which parameter
is estimated and consists of three parts separated by dots. Let us consider the first name
’matrix.M.1’. The left part ’matrix’ refers to the model ’RMmatrix’, the middle part ’M’ to
the parameter M of the model and the right part ’1’ numbers consecutively the entries of the
parameter. In case the parameter is a scalar, no number is attached. The names matrix.M.1
and matrix.M.2 denote the nugget effect of the first and second component, biwm.s denotes
the scale s, biwm.nudiag.1 and biwm.nudiag.2 refer to ν11 and ν22, biwm.cdiag.1 and
biwm.cdiag.2 denote c11 and c22, and biwm.rhored refers to ρred of the bivariate Whittle-
Matérn model in Section 4.1. As matrix.M.2 is close to zero, a note is displayed at the end
and the boundaries used in optim are given, see the above table after Internal variables.

Note that the values found in Gneiting et al. (2010) deviate slightly, as the former and the
current optimization algorithm differ. Note also that due to internal representation issues the
values for the estimated standard deviation reported above differ slightly for the ’Internal
variables’.

As mentioned in Section 3 not only the parsimonious model is fitted, but a sequence of models.
All models within this sequence can be made visible by

R> print(pars, full=TRUE)

indep. multivariate

===================

model 2 , Internal variables:

matrix2.M biwm.s biwm.nudiag biwm.cdiag

value 0.01922079 90.421047 0.5968900 6.744233e+00

sd 0.04061979 28.289452 0.0877261 1.354158e+00

lower 0.01922079 0.399673 0.1000000 3.694388e-04

upper 8.59579842 4668.895578 4.0000000 7.388775e+01

User's variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 68.811879 - 88.81451 1.712965 -

sd 7.854676 - 76.65762 1.664701 -

value - 0.01922079 90.42105 - 0.59689001

sd - 0.18176523 28.28979 - 0.08779084

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored
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value 69802.37 - -

sd 6337.83 - -

value - 6.744233 -

sd - 1.354161 -

#variab loglikelihood AIC

8.000 -1276.746 2569.491

Note that the (internal) fitted variable 'matrix.M.2' is close to or on the effective lower boundary.

Hence the gradient of the likelihood function might not be zero and none of the

reported 'sd' values might be reliable.

simple multivariate (biwm.rhored = 0)

=====================================

Internal variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 68.713145 0.01922079 90.325696 1.6805615 0.59704196

sd 6.954941 0.02509845 26.655742 0.6066646 0.08512939

lower 1.377946 0.01922079 0.399673 0.1000000 0.10000000

upper 616.236201 8.59579842 4668.895578 4.0000000 4.00000000

biwm.cdiag.1 biwm.cdiag.2

value 6.988096e+04 6.740859e+00

sd 2.150969e+04 1.329089e+00

lower 1.898735e+00 3.694388e-04

upper 3.797471e+05 7.388775e+01

User's variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 68.713145 0.01922079 90.32570 1.680561 0.59704196

sd 6.952666 0.18173424 26.40195 0.586658 0.08478152

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored

value 69880.964 6.740859 0

sd 4320.755 1.325465 -

#variab loglikelihood AIC

7.000 -1276.746 2567.491

Note that the (internal) fitted variable 'matrix.M.2' is close to or on the effective lower boundary.

Hence the gradient of the likelihood function might not be zero and none of the

reported 'sd' values might be reliable.

user's model

============

Internal variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2
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value 69.633411 0.01922079 96.108534 1.5602533 0.58651829

sd 7.125320 0.02518448 26.930517 0.5263959 0.08361192

lower 1.377946 0.01922079 0.399673 0.1000000 0.10000000

upper 616.236201 8.59579842 4668.895578 4.0000000 4.00000000

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored

value 6.716103e+04 6.957985e+00 -0.5822896

sd 1.986175e+04 1.339287e+00 0.1117433

lower 1.898735e+00 3.694388e-04 -0.9900000

upper 3.797471e+05 7.388775e+01 0.9900000

User's variables:

matrix.M.1 matrix.M.2 biwm.s biwm.nudiag.1 biwm.nudiag.2

value 69.633411 0.01922079 96.10853 1.5602533 0.58651829

sd 7.102884 0.18158245 26.59207 0.5051598 0.08366761

biwm.cdiag.1 biwm.cdiag.2 biwm.rhored

value 67161.03 6.957985 -0.5822896

sd Inf 1.297093 0.1051021

#variab loglikelihood AIC

8.000 -1265.737 2547.474

Note that the (internal) fitted variable 'matrix.M.2' is close to or on the effective lower boundary.

Hence the gradient of the likelihood function might not be zero and none of the

reported 'sd' values might be reliable.

The first model refers to the independent model. The first two lines of the table after User’s
variables correspond to the first component, the last two lines to the second component.
Parameters that have a dash are not estimated for the respective component. In the second
model, the components are also assumed to be independent (ρred = 0), but share the same
scale parameter. For the fixed parameter ρred, reporting the standard deviation is not ap-
propriate, indicated by a dash. Here, the independent model, which is the simplest model
concerning parameter estimation, has been fitted first. The fitted parameters serve as initial
values for estimating the parameters of the second model, called simple multivariate model
here. The parameters of the latter are finally used as starting values for the parsimonious
model.

As the parsimonious model has the smallest AIC, it should be chosen among the three models.
This finding is supported by the likelihood ratio test which uses a χ2 approximation:

R> RFratiotest(pars)

Approx. likelihood ratio test

=============================

Null model: (matrix.M.1, matrix.M.2, biwm.s, biwm.nudiag.1, biwm.nudiag.2, biwm.cdiag.1, biwm.cdiag.2, biwm.rhored=0)

Alt. model: user's model

loglikelihood test: 'Alt. model' against 'Null model': p=2.702e-06 (df=1)

Here, the null model is the simple multivariate model and the alternative model is the par-
simonious model. The RFratiotest reports the test statistic only for these two models, as
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the parsimonious model and the independent model do not include each other. The latter is
true since the parsimonious model is more flexible with regard to the correlation structure
while the independent model is more flexible with regard to scaling, cf. the arguments c and
s, respectively.

Following geoR, the cross validation

R> RFcrossvalidate(pars, x = weather[ , 3 : 4], data = PT, full = TRUE)

fits the model only to the complete data set and then the value at each of the 157 locations is
predicted by kriging given the data at all the other locations. Again, the argument full=TRUE
produces information about the internal sequence. The reported deviations are about the
same for all three models. Hence, cross validation does not give a clear preferance to any of
the three models.

In Gneiting et al. (2010), also the whole bivariate Whittle-Matérn model has been considered,
cf. Section 4.1. Re-analysis of this model can be done in a similar way as for the parsimonious
model,

R> whole.model <- nug + RMbiwm(nudiag = c(NA, NA), nured = NA,

+ s = rep(NA, 3), cdiag = c(NA, NA), rhored = NA)

R> whole <- RFfit(whole.model, distances = Dist.mat, dim = 3, data = PT)

Note: There are some indications that the model might be overparametrised

or that the bounds for the variables are too wide. Try narrower lower and

upper bounds for the variables in the latter case. One of the critical

parameters is 'lowerbound_var_factor' whose value (10000)

might be reduced.

Note: There are very strong indications that the model might be overparametrised

or that the bounds for the variables are too wide. Try narrower lower and

upper bounds for the variables in the latter case. One of the critical

parameters is 'lowerbound_var_factor' whose value (10000)

might be reduced.

Now, the likelihood ratio test between the parsimonious and the whole model,

R> RFratiotest(nullmodel = pars, alternative = whole)

Approx. likelihood ratio test

=============================

null model: df=8 loglik=-1265.737

alt. model: df=11 loglik=-1265.415

p= 0.9558062

yields that the parsimonious model should be preferred.

Finally, Figure 9 shows the kriged field for the parsimonious model that interpolates pressure
and temperature. To this end, the earth coordinates have been projected onto the plane.
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Figure 9: The kriged bivariate random field for the atmospheric data considered in Section 5.

R> a <- colMeans(weather[ , 3 : 4]) * pi / 180

R> P <- cbind(c(-sin(a[1]), cos(a[1]), 0),

+ c(-cos(a[1]) * sin(a[2]), -sin(a[1]) * sin(a[2]), cos(a[2])),

+ c(cos(a[1]) * cos(a[2]), sin(a[1]) * cos(a[2]), sin(a[2])))

R> x <- RFearth2cartesian(weather[ , 3 : 4])

R> plane <- (x %*% P)[ , 1 : 2]

R> dimnames(plane) <- list(NULL, c("X", "Y"))

Subsequently, kriging has been performed on a 200× 200 grid in the plane,

R> n <- 200

R> r <- apply(plane, 2, range)

R> data <- cbind(plane, weather[ , 1 : 2])

R> z <- RFinterpolate(pars, data = data, dim = 2,

+ x = seq(r[1, 1], r[2, 1], length = n),

+ y = seq(r[1, 2], r[2, 2], length = n),

+ varunits = c("Pa", "K"))

R> plot(z)

6. Concluding remarks

Here, the multivariate features of RandomFields version 3.0 have been presented. Besides the
extension of the tool box for analyzing and simulating random fields, a fundamental goal of
version 3.0 of RandomFields has been the improvement of the accessibility of the package. To
this end, the number of functions and the number of visible arguments have been reduced, at
the same time as the functionality of the package has been extended. Models are now defined
as functions, and even the “tilde” definition (~) of models can be used, in accordance with the
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formula specification of linear models. The number of man pages has been largely increased,
offering a separate man page for each model. Further, several summary pages are included,
and the documentation of more advanced features is shifted to secondary pages.

Currently, RandomFields offers more than 35 simple models and more than 30 functionals op-
erating on simple models to construct more complex ones. Besides multivariate models also
space-time models are included. RandomFields offers a modular construction system that
allows for any combination of models, functionals operating on models, and functions, when-
ever the combination is mathematically sound. Validity checks of the model are performed
by RandomFields.

The inference on Gaussian random fields will be extended towards mixed models with a spatial
Gaussian component. The package will also advance into the analysis and the modeling of
non-Gaussian fields, in particular max-stable random fields.

In Section 5 all the bivariate data have been co-located. This is certainly not the case for
many data sets. Now, co-located multivariate data ease algorithms for estimation and spatial
prediction. RandomFields is being developed towards arbitrary data where missing values
are coded by NAs.
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