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Follow along with the Jupyter tutorial

3

goo.gl/cbE7rs

https://goo.gl/cbE7rs


What is probabilistic modeling?

4goo.gl/cbE7rs

Tasks: 
• Sample from a distribution. 
• Learn parameters of a 

distribution from data. 
• Predict which distribution 

generated a data example.

https://goo.gl/cbE7rs


When should you use pomegranate?
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complexity of probabilistic modeling task

simple complexz }| {

• logistic regression 
• sample from a Gaussian 

distribution 
• speed is not important

Use scipy or 
scikit-learn

z }| {

• distributions not implemented in 
pomegranate 

• problem-specific inference 
algorithms

Use custom 
packages (in R or 

stand-alone)

z }| {
Use 

pomegranate

goo.gl/cbE7rs

https://goo.gl/cbE7rs


When should you use pomegranate?
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z }| {Use pomegranate

probabilistic modeling tasks

or
th

og
on

al
 ta

sk
s • Scientific computing: Use numpy, scipy 

• Non-probabilistic supervised learning (SVMs, 
neural networks): Use scikit-learn 

• Visualizing probabilistic models: Use matplotlib 
• Bayesian statistics: Check out PyMC3

goo.gl/cbE7rs

https://goo.gl/cbE7rs


Overview: this talk
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Overview 
Major Models/Model Stacks 

1. General Mixture Models 
2. Hidden Markov Models 
3. Bayesian Networks 
4. Bayes Classifiers 

Finale: Train a mixture of HMMs in parallel



The API is common to all models
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All models have these methods!

All models composed of  
distributions (like GMM, HMM...)  
have these methods too!

model.log_probability(X) / model.probability(X) 

model.sample() 

model.fit(X, weights, inertia) 

model.summarize(X, weights) 

model.from_summaries(inertia) 

model.predict(X) 

model.predict_proba(X) 

model.predict_log_proba(X) 

Model.from_samples(X, weights)

goo.gl/cbE7rs

https://goo.gl/cbE7rs


Overview: supported models

Six Main Models: 

1. Probability Distributions 
2. General Mixture Models 
3. Markov Chains 
4. Hidden Markov Models 
5. Bayes Classifiers / Naive Bayes 
6. Bayesian Networks

9

Two Helper Models: 

1. k-means++/kmeans|| 
2. Factor Graphs



pomegranate supports many distributions
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Univariate Distributions 

1. UniformDistribution 

2. BernoulliDistribution 

3. NormalDistribution 

4. LogNormalDistribution 

5. ExponentialDistribution 

6. BetaDistribution 

7. GammaDistribution 

8. DiscreteDistribution 

9. PoissonDistribution 

Kernel Densities 
1. GaussianKernelDensity 
2. UniformKernelDensity 
3. TriangleKernelDensity 

Multivariate Distributions 
1. IndependentComponentsDistributio

n 
2. MultivariateGaussianDistribution 
3. DirichletDistribution 
4. ConditionalProbabilityTable 
5. JointProbabilityTable 
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mu,	sig	=	0,	2	
a	=	NormalDistribution(mu,	sig)

X	=	[0,	1,	1,	2,	1.5,	6,	7,	8,	7]	
a	=	GaussianKernelDensity(X)

Models can be created from known values
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Models can be learned from data

X	=	numpy.random.normal(0,	1,	100)	
a	=	NormalDistribution.from_samples(X)



Overview: model stacking in pomegranate
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Distributions

Bayes Classifiers

Markov Chains

General Mixture Models

Hidden Markov Models

Bayesian Networks
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Overview: model stacking in pomegranate
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Overview: model stacking in pomegranate
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Distributions

Bayes Classifiers

Markov Chains

General Mixture Models

Hidden Markov Models

Bayesian Networks

D     BC   MC    GMM HMM  BN
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pomegranate can be faster than numpy

Fitting a Normal Distribution to 1,000 samples 
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pomegranate can be faster than numpy

Fitting Multivariate Gaussian to 10,000,000 samples of 10 
dimensions
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pomegranate uses BLAS internally
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pomegranate just merged GPU support
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pomegranate uses additive summarization

pomegranate reduces data to sufficient statistics for updates 
and so only has to go datasets once (for all models). 

Here is an example of the Normal Distribution sufficient 
statistics
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pomegranate supports out-of-core learning

Batches from a dataset can be reduced to additive summary 
statistics, enabling exact updates from data that can’t fit in memory. 
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Parallelization exploits additive summaries

Extract summaries

+
+
+
+

New Parameters
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pomegranate supports semisupervised learning
Summary statistics from supervised models can be added to 
summary statistics from unsupervised models to train a single model 
on a mixture of labeled and unlabeled data.
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pomegranate supports semisupervised learning

Supervised Accuracy: 0.93          Semisupervised Accuracy: 0.96
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pomegranate can be faster than scipy
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pomegranate uses aggressive caching
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Example ‘blast’ from Gossip Girl

Spotted: Lonely Boy. Can't believe the love of his life has 
returned. If only she knew who he was. But everyone knows 
Serena. And everyone is talking. Wonder what Blair Waldorf 
thinks. Sure, they're BFF's, but we always thought Blair's 
boyfriend Nate had a thing for Serena.
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How do we encode these ‘blasts’?

Better lock it down with Nate, B. Clock's ticking. 

+1 Nate 
-1 Blair
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How do we encode these ‘blasts’?

This just in: S and B committing a crime of fashion. Who 
doesn't love a five-finger discount. Especially if it's the middle 
one. 

-1 Blair 
-1 Serena
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Simple summations don’t work well
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Beta distributions can model uncertainty
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Beta distributions can model uncertainty
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Beta distributions can model uncertainty



Overview: this talk
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Overview 
Major Models/Model Stacks 

1. General Mixture Models 
2. Hidden Markov Models 
3. Bayesian Networks 
4. Bayes Classifiers 

Finale: Train a mixture of HMMs in parallel



GMMs can model complex distributions
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GMMs can model complex distributions

39
model = GeneralMixtureModel.from_samples(NormalDistribution, 2, X)



GMMs can model complex distributions

40



An exponential distribution is not right
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model = ExponentialDistribution.from_samples(X)



A mixture of exponentials is better

42
model = GeneralMixtureModel.from_samples(ExponentialDistribution, 2, X)



Heterogeneous mixtures natively supported

43
model = GeneralMixtureModel.from_samples([ExponentialDistribution, UniformDistribution], 2, X)



GMMs faster than sklearn

44



Overview: this talk
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Overview 
Major Models/Model Stacks 

1. General Mixture Models 
2. Hidden Markov Models 
3. Bayesian Networks 
4. Bayes Classifiers 

Finale: Train a mixture of HMMs in parallel



CG enrichment detection HMM
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GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA



CG enrichment detection HMM

GACTACGACTCGCGCTCGCACGTCGCTCGACATCATCGACA
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pomegranate HMMs are feature rich
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GMM-HMM easy to define

49



HMMs are faster than hmmlearn
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Overview 
Major Models/Model Stacks 

1. General Mixture Models 
2. Hidden Markov Models 
3. Bayesian Networks 
4. Bayes Classifiers 

Finale: Train a mixture of HMMs in parallel



Bayesian networks
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Bayesian networks are powerful inference tools which define a 
dependency structure between variables.

Sprinkler

Wet Grass

Rain



Bayesian networks
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Sprinkler

Wet Grass

Rain

Two main difficult tasks: 
(1) Inference given incomplete information 
(2) Learning the dependency structure from data



Bayesian network inference
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Inference is done using Belief Bropagation on a factor graph. 
Messages are sent from one side to the other until convergence.

Rain

Sprinkler

Grass 
Wet

R/S/GW 
Factor

Grass 
Wet

Rain

Sprinkler

Marginals Factors



Inference in a medical diagnostic network
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BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC



Inference in a medical diagnostic network
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BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC



Bayesian network structure learning
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???

Three primary ways: 
● “Search and score” / Exact 
● “Constraint Learning” / PC 
● Heuristics



Bayesian network structure learning
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???

pomegranate supports: 
● “Search and score” / Exact 
● “Constraint Learning” / PC 
● Heuristics



Exact structure learning is intractable

???

59



Chow-Liu trees are fast approximations

60



pomegranate supports four algorithms

61



Constraint graphs merge data + knowledge
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BRCA 2 BRCA 1 LCT

BLOATLE LOA VOM AC

PREGLIOC

genetic conditions

conditions

symptoms



Constraint graphs merge data + knowledge
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genetic conditions

diseases

symptoms



Modeling the global stock market

64



Constraint graph published in PeerJ CS

65
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Overview 
Major Models/Model Stacks 

1. General Mixture Models 
2. Hidden Markov Models 
3. Bayesian Networks 
4. Bayes Classifiers 

Finale: Train a mixture of HMMs in parallel



Bayes classifiers rely on Bayes’ rule

67
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Let’s build a classifier on this data
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Likelihood function alone is not good
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Priors can model class imbalance
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The posterior is a good model of the data



Naive Bayes assumes independent features
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Naive Bayes produces ellipsoid boundaries

73model = NaiveBayes.from_samples(NormalDistribution, X, y) 



Naive Bayes can be heterogeneous

74



Data can fall under different distributions

75



Using appropriate distributions is better
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model = NaiveBayes.from_samples(NormalDistribution, X_train, y_train) 
print "Gaussian Naive Bayes: ", (model.predict(X_test) == y_test).mean() 
clf = GaussianNB().fit(X_train, y_train) 
print "sklearn Gaussian Naive Bayes: ", (clf.predict(X_test) == y_test).mean() 
model = NaiveBayes.from_samples([NormalDistribution, LogNormalDistribution, 
ExponentialDistribution], X_train, y_train 
print "Heterogeneous Naive Bayes: ", (model.predict(X_test) == y_test).mean()

Gaussian Naive Bayes:  0.798 
sklearn Gaussian Naive Bayes:  0.798 
Heterogeneous Naive Bayes:  0.844



This additional flexibility is just as fast

77



Bayes classifiers don’t require independence
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naive accuracy: 0.929         bayes classifier accuracy: 0.966



Gaussian mixture model Bayes classifier

79



Creating complex Bayes classifiers is easy
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gmm_a = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 0]) 
gmm_b = GeneralMixtureModel.from_samples(MultivariateGaussianDistribution, 2, X[y == 1]) 
model_b = BayesClassifier([gmm_a, gmm_b], weights=numpy.array([1-y.mean(), y.mean()])) 



Creating complex Bayes classifiers is easy

81

mc_a = MarkovChain.from_samples(X[y == 0]) 
mc_b = MarkovChain.from_samples(X[y == 1]) 
model_b = BayesClassifier([mc_a, mc_b], weights=numpy.array([1-y.mean(), y.mean()])) 

hmm_a = HiddenMarkovModel.from_samples(X[y == 0]) 
hmm_b = HiddenMarkovModel.from_samples(X[y == 1]) 
model_b = BayesClassifier([hmm_a, hmm_b], weights=numpy.array([1-y.mean(), y.mean()])) 

bn_a = BayesianNetwork.from_samples(X[y == 0]) 
bn_b = BayesianNetwork.from_samples(X[y == 1]) 
model_b = BayesClassifier([bn_a, bn_b], weights=numpy.array([1-y.mean(), y.mean()])) 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Training a mixture of HMMs in parallel

83

Creating a mixture of HMMs is just as simple as passing the 
HMMs into a GMM as if it were any other distribution



Training a mixture of HMMs in parallel

84fit(model, X, n_jobs=n)



Documentation available at Readthedocs

85



Tutorials available on github

86
https://github.com/jmschrei/pomegranate/tree/master/tutorials
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