rrry y
L)

LSiiT

CENTRE RATIONAL
DE L RECHERCHE

LSIIT - UMR 7005 - Pole API
Bd Sébastien Brant - BP 10413
67412 Illkirch Cedex

FRANCE

Programmer’s Reference Manual

Object Prototype

Lisaac V.0.39 rcl

The power of simplicity at work for you
by

SONNTAG Benoit (benoit.sonntag@lisaac.org)
OswALD Xavier (xavier.oswald@lisaac.org)

21

ICPS Group (Scientific Parallel Computing and Imaging)
Section: Compiler and optimization

Version 0.1

Version 0.2

Version 0.3

Version 0.31

Version 0.39

Document history

September 12, 2003
Benoit Sonntag, Dominique Colnet,
Olivier Zendra, Jerome Boutet

October 20, 2004
Benoit Sonntag, Jerome Boutet

September 24, 2007
Benoit Sonntag, Alexandre Chabert

September 22, 2008
Benoit Sonntag, Pierre-Alexandre Voye

December 22, 2009
Benoit Sonntag, Xavier Oswald

Contents

1 Introduction / Introduction

1.1 Motivation / Avant proposo
1.2 The Lisaac compiler / Le compilateur Lisaac
1.3 Why Using Lisaac o e
1.4 Notations e
2 Quickstart - for beginners
2.1 Lisaac: a prototype based language
2.2 Notations e
2.3 Objects
2.4 Slots . . .
2.4.1 Methods and functions
2.4.2 Local variables L
2.5 Compilation and running oL oL o Lo
2.6 How to write e
2.6.1 Types . . . o
2.6.2 My first Lisaac programo
2.6.3 How toprint
2.64 Howtoread
2.6.5 Conditionals: ifelse
2.6.6 A loop: dowhile
2.7 Lisaac: an object oriented language L.
2.7.1 Clone e e
2.7.2 Inheritance
3 Language Reference
3.1 Lip: Lisaac project file (Lisaac Makefile)
3.1.1 Lip Grammar e e e
3.1.2 Example.
3.1.3 Lip usage and features Lo
3.1.4 Advanced Lip usage
3.2 Lexical and syntax overview Lo
3.2.1 Lexical overview
3.2.2 Syntax overviewo
3.3 Sections identifiers oL Lo
3.3.1 TheHeader section
3.3.2 The Inherit section e
3.3.3 The Insert section e
3.3.4 The Mapping section L oL

© 0o O Ut W

11

14
14
15
16
20
20
21
21
22
22
22
23
24
24
25
26

21

3.4

3.5

3.6

3.7

3.8
3.9

3.10

3.11

3.12

3.13

3.14

CONTENTS
3.3.5 The Interrupt section L . 54
3.3.6 The External section 55
3.3.7 Other sections 55
Typenames Lo 60
3.4.1 Genericityo 61
3.4.2 Invariant’s type control L oL oo 61
3.4.3 Particular type: SELF typeo o 62
3.4.4 Particular type: FIXED_ARRAY[E| type 64
Prefix of types 64
3.5.1 Expanded type 64
3.0.2 Stricttype. 64
Slots . . . o e 64
3.6.1 Default value of a slot according to its type. 64
3.6.2 Sharedslots L 65
3.6.3 Non sharedslots 68
3.6.4 Expandedslots 71
Slot descriptors e 76
3.71 Keywordslots. o 76
3.7.2 Binary messagesot et e e e e 7
3.7.3 Unary messages« . oo v i e e e e e e e e e e 79
3.7.4 Variable-argument list o oo 80
Message send, late binding o oo 80
Assignment L oL 80
3.91 Typingrules L 81
3.9.2 Implicit-receiver messages oL o 81
3.9.3 A particular assignment: 7= 82
3.9.4 Binary message send o o 83
3.9.5 Unary message send L oo 83
Statement lists L L 83
3.10.1 Return values of listso 84
3.10.2 Useof lists 85
3.10.3 Local variables in statement lists 88
Statement blocks L 89
3.11.1 Return values of blocks 90
3.11.2 Useof blocks 91
3.11.3 Argument and local variables in statement blocks 93
Export / Import automatic conversion object 94
3.12.1 Auto-Export object 94
3.12.2 Auto-Import object 94
3.12.3 Complex import / Export with vector object 95
Tools for programming by contract 0oL 96
3.13.1 degrees of assertions 98
3.13.2 Requires and Ensureso oo 98
3.13.3 Invariant Lo 99
3.134 Result and Old o 100
3.13.5 Inheritance 101
COP: Concurrent Object Prototypes 102
3.14.1 Description 102

3.14.2 Communication Between Environments 103

CONTENTS

3.15

4 The
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5 The
5.1

5.2

5.3

5.4

3.14.3
3.14.4

Typing Rules
Creating Execution Environments

Externals

3.15.1
3.15.2
3.15.3
3.15.4

Slot external
Ccodein Lisaac o
Lisaac code in C
Lisaac externalo

Lisaac Library

OBJECT e e e
NUMERIC e
CHARACTER e e
BOOLEAN . . . e e
BLOCK e
NATIVE_ARRAY
STRING e
FAST_ARRAY
STD_INPUT e e e
STD_OUTPUT e e e e e e
COMMANDL_LINE e
Default values

Lisaac World
Glossary of useful selectors oL

5.1.1
5.1.2
5.1.3
5.14
5.1.5
5.1.6
5.1.7
5.1.8

Assignment Lo L
Cloning e
CompariSons e
Numeric operations
Logical operations (BOOLEAN) (see 5.2.1)
Bitwise operations (INTEGER)
Control e
Debugging

Control Structures: Booleans and Conditionals

5.2.1
5.2.2
Loops
5.3.1
5.3.2
5.3.3

Booleans expressiono
Conditionals L
Pre-tested looping
Post-tested looping Lo oo
Iterators looping

Collections s

5.4.1
5.4.2

List of collections
Example

104
106
107
107
107
109
109

111
111
111
114
114
115
116
116
118
120
120
120
121

22

CONTENTS

Chapter 0001b

Introduction / Introduction

Lisaac is the first object-oriented language based on prototype concepts really compiled, with
system programming facilities. Two languages are at its origin: the Self language [US87] for
its flexibility and the concept of dynamic inheritance as well as the Eiffel language [Mey94]
for its static typing and security (programming by contract). The Lisaac compiler produces
optimized Ansi C code later compilable on any architecture equipped with an appropriate C
Compiler (GCC or others), thus making Lisaac a truly multi-platform language. Moreover,
performance results of compiled objects show that it is possible to obtain executables from a
high-level prototype-based language that are as fast as C programs.

Lisaac est le premier langage objet basé sur le concept des prototype a étre réellement com-

pilé, tout en étant muni de facilités pour la programmation systéme. Celui-ci trouve son
origine dans deux langages : Le langage Self [US87] pour sa flexibilité et le concept d’héritage
dynamique, ainsi que le langage Fiffel pour le typage statique et la programmation par con-
trat. Le compilateur Lisaac produit un code Ainsi C optimisé compilable sur toute architecture
suportant un compilateur C (GCC ou autre), faisant de Lisaac un langage réellement multi-
plateforme. Les performances obtenu avec la compilation d’objet démontre qu’il est possible
d’obtenir un binaire aussi rapide que du C, méme avec un langage objet a prototype.

Future work
Voici le futur !!!
Welcome to the future
in the Matrixz !

1.1 Motivation / Avant propos

The design as well as the implementation of the ISAAC ! operating system [Son00] led us to
design a new programming language named Lisaac.

Lisaac integrates communications protection mechanisms, system interruptions support as
well as drivers memory mapping. The use of prototypes and especially dynamic inheritance fits
perfectly the construction of a flexible operating system.

The purpose of our project is to break from the internal rigidity of current operating systems
architecture that mainly depends, in our opinion, on the low-level languages that have been used
to write them.

Thus, Isaac has been fully written in a high-level prototype-based language.

saac:Object-oriented Operating System.

6 CHAPTER 1. INTRODUCTION / INTRODUCTION

The evolution of programming currently fulfills nowadays data-processing needs and con-
straints in terms of software conception and production.
Nevertheless, modern languages such as object-oriented ones have never brought a real alterna-
tive to their procedural counterparts like C in the development of modern operating systems.

Historically, during the creation of an OS, programming constraints related to the hardware
have been systematically fulfilled with a low-level language, such as C.
This choice leads generally to a lack of flexibility that can be felt at the applicative layer.

Our thoughts led us to design and implement a new object-oriented language equipped with
extra facilities useful for the implementation of an operating system.
In order to achieve that goal, we started to look for an existing object-oriented language with
powerful characteristics in terms of flexibility and expressiveness.

Lisaac also comes from an experiment in the creation of an operating system based on
dynamic objects, which possibilities are a subtle mix of Self and FEiffel, with the addition of
some low-level capabilities of the C language.

Our language is the first compiled prototype-based language really usable. Compiled objects
remain objects with all their capabilities and expressivity preserved. Hardware facilities are
included natively, such as mapping or interrupt management.

La conception du systéme d’exploitation ISAAC ® nous a mené a la conception d’un nouwveau
langage nommé Lisaac. Lisaac integre des mécanismes de protections de communications, de
support des interruptions, de méme que le mappage en mémoire de données pour les pilots de
périphériques. L’objectif de notre projet est de se départir de la rigidité interne des systemes
d’exploitations dépendant principalement, selon nous, des langages bas niveau utilisés pour
les écrire. Ainsi, Isaac a été intégralement écrit avec un langage haut niveau;

L’évolution du marché du logiciel et de la technologie implique de nouvelles contraintes en
terme de conception et de développement qui implique d’utiliser des langages de haut niveau.
Malgré cet état de fait, les systémes d’exploitations n’ont pour le moment d’autres alternative
que d’étre écris dans des langages procédurauz comme C.

Ces choix et contraintes impliquent un manque patent de flexibilité qui peut seulement étre at-
teint au niveau applicatif. Notre conception de la problématique nous a conduit a implémenter
un nouveau langage objet flexible, expressif et puissant, muni de facilités permettant la pro-
grammation systéme. Lisaac est ainsi le fruit d’un marriage subtil entre Self et Fiffel, adjoint
de facilités systemes. Les objets compilés restent ainsi des objets conservant toutes leurs ca-
pacités et expressivite.

“Isaac:Object-oriented Operating System.

1.2 The Lisaac compiler / Le compilateur Lisaac

The Lisaac compiler produces optimized C Ansi Code, which can then be compiled on every
architecture with an appropriate C Compiler (GCC or others).

The compiler is fully written in Lisaac, the boostrap having been done in 2004, january.

The bootstrap mechanism is explained in the following figure.

State 1: the first version of the Lisaac compiler is written in another language (here Eiffel),
and compiled as every other Eiffel code with the Eiffel Compiler. It produces an executable, the
first version of Lisaac compiler.

1.2. THE LISAAC COMPILER / LE COMPILATEUR LISAAC 7

State 2: the source code of the first compiler is fully translated in Lisaac. We then use our
compiled Lisaac compiler version 1 to compile the new code (as we can do for every program
written in Lisaac). It produces an executable, the second version of Lisaac compiler. In fact,
if there is no error, version 1 and version 2 operate equally, the only difference being the Eiffel
dependance for the first one.

State 3: the source code of the compiler version 2, written entirely in Lisaac, is compiled
again, this time using the version 2 of our Lisaac compiler. It produces the version 3 of the
Lisaac compiler.

Every iteration of the state 3 doesn’t change the produced executable, we are in a stable
state. Of course, the code of the compiler has to be error free before starting the bootstraping
operation. The advantage of this boostrap is that we are now totally independent of another
language: the compiler is now written in Lisaac, with a usable version compiled with itself: the
compiler is built using only Lisaac technology.

Le compilateur Lisaac produit du code C optimis’e compilable sur toutes les architectures pro-
posant un compilateur C' (GCC ou autres). Le compilateur est totalement ’ecrit en Lisaac,
le boostrap ayant eu lieu en janvier 2004.

Le bootstrap se d’eroule de la mni‘ere suivante :

Etape 1 : La premi‘ere version du compilateur Lisaac est ‘ecrit dans un autre langage (ici
Eiffel, langage objet classe choisi pour sa puissance, sa g’en’ericit’e, 'impl’ementation na-
tive des contrats) et compil’e comme tout programme FEiffel par le compilateur SmartEiffel.
1l produit un ex’ecutable, devenant le premier compilateur Lisaac.

Etape 2 : Le code source du premier compilateur est totalement traduit en Lisaac. Nous
utilisons ensuite notre compilateur (issu de ”etape 1) lisaac pour compiler le nouveau code
(comme nous pouvons le faire avec tout programme ’ecrit en Lisaac). Cela produit un
ex’ecutable, la seconde version du compilateur Lisaac. S’il n’y a pas d’erreur, la version
1 et 2 fonctionnent de la mme mani‘ere, la seul diff ’erence ‘etant que le premier est ’ecrit en
Eiffel.

Etape 3 : Le code source du compilateur de [”etape 2, totalement ’ecrit en Lisaac est compil’e
une nouvelle fois, cette fois en wtilisant la 2‘eme version du compilateur. Cela produit la
3‘eme version du compilateur.

Chaque it’eration de l”etape 3 ne change pas lex’ecutable produit : nous sommes dans un ’etat
stable. Bien ’evidemment, le code du compilateur doit tre exempt d’erreur avant de d’emarrer
l’op’eration de bootstraping. L’avantage de cette op’eration de bootstrap est de nous permettre
d’tre totalement ind’ependant d’un autre langage : le compilateur est maintenant ’ecrit en
Lisaac, avec une version compil’e par lut mme. Le compilateur est ainsi produit en utilisant
la technologie Lisaac.

23 CHAPTER 1. INTRODUCTION / INTRODUCTION

)

/ Li saac

/Cb |Ier
///////

/\Ier sion 1
Yrrrsrsrr

/ Execut abl e

Li saac
N o
3
\versi on]S version 2

k AARARRRRN,

/ Execut abl e

Li saac

Eiffel
Conpi | er

Execut abl e

The compiler can be run on every architecture which have a C compiler. Le compilateur peut tre utilis’

Generic

Li saac

Conpi | er

Conpi | er

Architecture Specific

1.3 Why Using Lisaac

Lisaac was first developped to implement the ISAAC Operating System but became an indepen-
dent object oriented language, perfectly usable to write all kind of programs.

It has numerous advantages: it’s a powerful high level language, based on prototype concepts.
Security has been a real aspect from the start, with the static typing and assertion management
(programming by contract) such as Requires, Ensures and Invariant, and lots of verifications
during compilation.

1.4. NOTATIONS 9

Many high-level optimizations also provide efficiency and speed to the compiled code.
A large library, fully written in Lisaac, supply the programmer with a large scale of built-in
prototypes and functions, such as:

e Number (signed / unsigned 8, 16, 32, 64 bits integer; real (fixed or float); infinite accuracy
integer)

e Collections: variable arrays, linked-lists, dictionary (associativity key-value), set
e Hash coding

e Memory management

e Input / Output

e File System (Unix / Linux ; Windows / Dos)

e Image format (bitmap; vectorial)

e Graphic (8, 15, 16, 24, 32 bits)

e Time and Date

Lisaac a ’et’e avant tout impl’ement’e pour d’evelopper le syst‘eme d’exploitation Isaac, mais
devenant par la suite un langage g’en’eraliste.

1l a de nombreux avantages : C’est un langage haut niveau tres puissant, bas’e sur les
concepts prototypes. La s’ecurit’e logiciel fut un aspect pris en compte d‘es le d’epart, avec le
tyage static et la gestion des contrats comme les Requires, Ensures and Invariant, ainsi que
les nombreuses v’erifications durant la compilation.

1.4 Notations

In this document, you’ll find memory representation of objects. Here is the caption of the figures.
Dans ce document, vous trouverez des figures reprsentant la prsence en mmoire des objets.

La liste des figures sont les suivantes :

a Mutable object

@ NonMutable object \ ___________________________

B = omnd] e
. . >l -
Section Inherit —> || [+ parent [> P |+ index 5

Integer value
sionvaong —= M [} " Fat her
Reference)
Section Public —> | P |- v el D4 — Embedded object (Expanded)

1

1

1

1

1

1

1

i 1
Sot > - S|Ol_0b]- |PM| .
- slot_obj2 1
\ obj ect 2 1

Indirection point 1

1

1

1

1

1

1

1

1

1

[Pee 1]

obj ect3

runnable space

10

CHAPTER 1. INTRODUCTION / INTRODUCTION

Chapter 0010b

Quickstart - for beginners

After reading this chapter, you will be able to write simple programs.

The next chapter will teach you more about Lisaac, allowing you to use all of its capabilities and
Dans ce manuel, vous trouverez de nombreuses repr’esentations d’objets en m’emoire. Ici la

Power- ‘ charte graphique utilis’ee pour les repr’esenter.

2.1 Lisaac: a prototype based language

Lisaac is an object oriented language based on prototype concepts.

Class and prototype languages differ on few but important points. In a class language, you
have to instanciate an object from its description in order to make it alive.

In a prototype language, a description of an object is already alive. In Lisaac you can directly
use the "master” object without having instanciated it.

This particular object name is written in capitals and can be used as any other object.

Other objects are obtained by cloning the "master” one. The clone routine is actually not a
hard-coded function but one from the library.

I nst ance

———] dass

cl one

—— Prot ot ype

We can see from this property that inheritance is particular. Objects inherit from alive objects,
with their own live. It permits numerous variations from inheritance, depending of its type (+
or -), such as sharing parents between 2 cloned object, or dynamic inheritance (by changing
the reference of the parent). We will see this later.

11

12 CHAPTER 2. QUICKSTART - FOR BEGINNERS

Cl ass Prot ot ype

InheritT I nherit

I nstance cl one

Objects are the fundamental entities in Lisaac; every entity in a program is represented by
one or more objects. Even controls are handled by objects: blocks (3.11 page 89) are Lisaac
closures used to implement user-defined control structures. An object is composed of a set of
slots. A slot is a name-value pair. Slots may contain references to other objects. When a slot is
found during a message lookup (see section 3.3.2 page 50), the object in the slot is evaluated.

2.1. LISAAC: A PROTOTYPE BASED LANGUAGE 13

Lisaac est un langage objet orient’e prototype. Les classes et les prototypes diff‘erent de
faon importante sur quelques points. Dans un langage classe, vous devez instancier un
objet partir de sa description pour le rendre vivant. Dans un langage objet prototype, la
description de votre objet est dors et d’ej vivante. Dans le langage Lisaac, vous pouvez d’ej
utiliser 'objet ”Matre” sans avoir linstancier.

Cet objet particulier est ’ecrit en lettre capitale et peut tre utiliser comme d’autres objets. Les
autres objets peuvent tre obtenus en clonant 'objet ”"Matre”. La m’ethode clone n’est pas
une primitive du compilateur : elle tout simplement d’efini dans le prototype OBJECT.

I nst ance

net hod ML ——] dass

cl one
Pr ot ot ype

Nous pouvons voir par ces propri’et’es que dans ce mod‘ele, I’h’eritage est particulier : Les
objets h’eritent d’autres objets vivants, qui vivent leur propre vie. Il est ainsi permis de
nombreuses variations, en fonction de son type (+ ou -), comme partager un parent entre 2
objets clon’es, ou I’h’eritage dynamique (en changeant la v’ef ‘erence au parent). Nous verrons
tout cela plus tard.

Cl ass Pr ot ot ype

I nherit I nherit I nherit

I nst ance clone

L objet est l’entit’e fondamentale en Lisaac : toute entit’e est un programme repr’esent’e par
un ou plusieurs objets. Toutes les structures de contrle sont prise en main par des objets : les
blocks (3.11 page 89) sont en lisaac les fermetures utilis’ees pour impl’ementer les structures
de contrles. Un objet est constitu’e d’un ensemble de slots Un slot est une paire nom-valeur.
Les slots peuvent contenir des r’ef’erences d’autres objets Quand un slot est trouv’e durant
un lookup de message (voir la section 3.5.2 page 50), l'objet du slot est ’evalu’e.

14 CHAPTER 2. QUICKSTART - FOR BEGINNERS

2.2 Notations

Lisaac is case sensitive, and respects the following constraints:

Variables and slots are written with small letters (z,counter,. ..).

Type of objects (or "master” name object / prototype) are in capital letters (INTEGER,BOOLEAN,. . .).
Keywords are written in small letters but start with a capital letter (Section,Header,...).

Symbol := is an affectation. Be careful not to use symbol = which compares 2 objects

and returns a boolean.

You will see symbol 4 or - before the slots. It defines the type of the slot and is mandatory.

Its role will be explained in the following pages.

A sequence ends with j .If not, the compiler continues to the following line.
You can define a list of sequence between (and). See section 3.10 on page 83 for more

information on instruction lists.

Comments begin with // and stop at the end of the line.

Multi-lines comments start with /* and end at */.

2.3 Objects

Lisaac est sensible la casse et respecte les contra
‘ecrit en minuscule (z,counter,. ..).

Type et objets (ou le nom de [’objet/prototype "M
GER,BOOLEAN,. ..).

Mot-cl’es sont ’ecrit en lettre minuscule, la prer
tion, Header,. . .).

Le symbole := est une affectation. Faites bie
= qui compare deux objets et retourne un bool’een.
Vous verrez le symbole + or - avant chaque slot. .
obligatoire. Son rle sera expliqu’e dans les prochain.

In Lisaac, objects are the fundamental entities. Everything is represented by one or more of
them, from a simple Integer or Boolean to more complex entities like arrays or windows.
An object is written in one and only one file, named as the name of the object and followed by

the extension .li.

For example, integer.1i, boolean.li,window.11, ...

The source code of an object is divided in sections.

Section Header is needed. In this section, you define the name of the object. Then you have
the Section Public, in which you define the slot which will be executed at initialization (more

in later sections).
Section, Header and Public are keywords.

FEzxample: file hello_world.1li

Section Header
+ name := HELLO_WORLD;
Section Public

/*x ...x/

// Name is in capital letters

2.4. SLOTS 15

A Note that there is no ; after Section xxxx .

En lisaac, Uentit’e fondamentale est l’objet. Toutes les entit’es du language sont constitu’es
de 'un d’entre deuz, que ce soit un simple entier ou bool’een, ou un objet plus complexe
comme une collection ou une fenétre.

Un objet est d’ecrit dans un et un seul objet, nomm’e comme le nom de l'objet - suivi de
lextention .l1i .

Par exemple , integer.li, boolean.li,window.11i, ...

Le code source de [’objet est divis’e en sections. La Section Header est obligatoire. C’est
dans cette section que vous pouvez d’efinir le nom de l'objet, entre autres choses. Vous trou-
verez ensuite la Section Public, dans laquelle vous pouvez d’efinir le slot qui sera ex’ecut’e
linitialisation.

Section, Header et Public sont des mots cl’es.

Ezemple: le fichier hello_world.li

Section Header
+ name := HELLO_WORLD; // Le nom est toujours en lettres majuscules
Section Public

/x ...x/

ANotez qu’il n’y a pas de ; apr‘es Section xxxx.

2.4 Slots

An object is composed of slots, which are services given by the object.

A slot can be data as well as code (function or method).

A slot is defined by a name. It can also add a static type for data and functions.

A slot is prefixed by the + or - sign, which gives its type (to simplify, with - values are shared
between objects while values are local to the object with +).

The type is defined after the sign

Section Header

+ name := MY_OBJECT; // Name is in capital letters
Section Public
+ slot:INTEGER; // Value local to the object,
// and init with INTEGER default value
- slot2:INTEGER := 3; // Value shared between objects, init with value 3

Un objet est compos de slots, qui sont autant de serices proposs par cet objet.

Un slot peut tre des donnes autant que du code (fonction ou mthode).

Un slot est toujours prfiz par le signe + or -, qui donne sa porte. Pour simplifier, avec
-, les objets sont partags entre objets, tandis qu’avec =+, les donnes sont locales [’objet. Le
type est dfini aprs le signe

24 CHAPTER 2. QUICKSTART - FOR BEGINNERS

P | +sl ot [O

-slot2 3
My_OBJECT
P| +sl ot [e]

-slot2

O her object of type MY_OBJECT

2.4.1 Methods and functions

Simple slots

Comme predemment dfini, un slot peut reprsenter une fonction ou une mthode. Les mthodes
(ou routines) sont une notion fondamentales des langages orient objets, avec le concept con-
nexe qu’est la liaison dynamique (ou envoi de message, appel de routine, appel de mthode,
rsolution dynamique ...).

1l y a deux types de slots. Le premier est excut [’initialisation de l’objet et dfini en tant que
valeur par dfaut d’une variable.

+ slot :INTEGER := 3 + 4; // L’opration ’3 + 4’ est evalue
1’initialisation. + slot2:INTEGER := slot * 2;

Le second type est excut uniquement lors de [”appel du slot, et est dfini par le symbole <-
symbol.

+ slot :INTEGER := 3; + slot2 :INTEGER <- (5 + slot); // L’opration ’5 +
slot’ est value lors de 1l’appel de slot2

Un code plus compleze peut bien evidemment tre dfini entre parenthses

+ slot :INTEGER := 3; + slot2 :INTEGER := 4; + slot3 <- // Slot sans valeur
de retour (slot := slot + 3; slot2 := slot + 5; slot2 := slot2 * 3;);

Notez que vous pouvez crire votre code sur une seule ligne, bien que ce soit moins lisible. La
valeur de retour est la dernire valeur, sans ;.

+ slot :INTEGER := 3; + slot2 :INTEGER <- (slot // Valeur de retour, value
1’appelle de slot3); + slot3:INTEGER := (slot := slot + 6; slot := slot2 * 5;
slot // Valeur de retour value lors du chargement de 1l’objet.);

AFaites bien attention la cohrence du type de l’objet de retour dfini en entte de fonction
et le type de l’objet renvoy.

As said before, a slot can also represent a function or method.
Methods(or routines) are a fundamental notion in object-oriented languages, together with
their companion concept late binding (or message sending, routine call, method call, dynamic
dispatch, ...).

There are two types of code slots. The first one is executed at the load of the object and is
defined as the default value of a variable.

+ slot :INTEGER := 3 + 4; // Operation ’3 + 4’ is evaluated at init + slot2:INTEGER
:= slot * 2;

2.4. SLOTS 17

The second type is executed only on the call of the slot and is defined with the <= symbol.

+ slot :INTEGER := 3; + slot2 :INTEGER <- (5 + slot); // Operation ’5 + slot’ evaluated
when calling slot2

More complex code can be defined within parenthesis.

+ slot :INTEGER := 3; + slot2 :INTEGER := 4; + slot3 <- // Slot without return value
(slot := slot + 3; slot2 := slot + 5; slot2 := slot2 * 3;);

Note that you can write all your program on the same line, but it’s more easy to read to
align the code like that. The return value of a code is the value of the last code (without 3)

before) .

+ slot :INTEGER := 3; + slot2 :INTEGER <- (slot // Return Value, evaluated with
call of slot3); + slot3:INTEGER := (slot := slot + 6; slot := slot2 * 5; slot // Return
Value, evaluated during load of the object);

A Be carefull, the return type of the slot must be the same as the type of returned value.

+ slot :INTEGER := 3; + slot2 :INTEGER := 4; + slot3 :BOOLEAN <- (slot = slot2 //
Returns TRUE if equal, FALSE if not); + slot4:INTEGER <- (slot3 // Error: type
are different);

Call of a slot

The call of a slot depends on when it happens.
L’appel d’un slot dpend du moment o il arrive.

Fichier objectl.1i

Section Header + name := OBJECT1l; Section Public + slot :INTEGER := 3; +
slot2 :INTEGER <- (slot * 2 + 4 // Appel de ’slot’ partir du mme objet);

File object1.11

Section Header + name := OBJECT1; Section Public + slot :INTEGER := 3; + slot2
!INTEGER <- (slot * 2 + 4 // Call of ’slot’ from the same object);

An object is initialized with the NULL value, and a call on it will create an error. In a
prototype language (see 2.1 page 11), the "master” object (written in capital letters) is alive
without needing to instanciate it. Other objects are created by cloning it using the clone slot.
For more information see 2.7 page 24.

File main_object.li

Section Header + name := MAIN_OBJECT;

Section Public + slot_object:0BJECT1; + slot_object2 :INTEGER <- (slot_object :=
OBJECT1.clone; // clone of the OBJECT1 object. slot_object.slot2 + 5 // Call of ’slot2’
on ’slot_object’ of OBJECT1 type);

The symbol . defines a slot call on another object.

18 CHAPTER 2. QUICKSTART - FOR BEGINNERS

Slots with arguments

You can also call a slot with parameters.

+ slot a:INTEGER :INTEGER <- // 1 parameter. You don’t need parenthesis
(

a *x 2
)

+ slot2 (a,b:INTEGER) :INTEGER <- // 2 parameters of the same type
(
a+b

)

+ slot3 (a:INTEGER,b:CHARACTER) :INTEGER<-// 2 parameters of different types
(

b.print;
a x 3
);
+ slot4 :INTEGER <-
(
slot 3 + slot2 (2,3) + slot3 (4,’y?) // call of slots
)

You can define your own keywords to separate parameters.

+ slot a:INTEGER value b:INTEGER :INTEGER <- // value is my defined-keyword
(
a+b=x*x2

)

+ slot2 (a,b:INTEGER) write c:CHARACTER :INTEGER <-
(

c.print;

a xb

)

+ slot3 a:INTEGER multiply b:INTEGER add c:INTEGER :INTEGER <-
(

ax*x (b + c)

)

+ slot4 :INTEGER <-
(

// call of slots

slot 3 + (slot2 (2,3) write ’c’) + (slot3 4 multiply 5 add 6)
);

2.4. SLOTS 19
Assignment of slots

A Be carefull, you can’t assign a value to a slot outside the object, as shown in the following
example.

Section Header
+ name := OBJECTI;

Section Public
+ value:INTEGER := 3;

Section Header
+ name := MAIN_OBJECT;

Section Public
+ slot_object:OBJECTI;

- method <-
(
slot_object := OBJECTL.clone;
slot_object.value := 4; // The compiler will stop

)

This is done to protect slots from objects. When you define an object, you must specify the
slots which can change by creating methods dedicated for that. You can find this tedious, but it
will insure that you have the total control of what is done with your object. Just imagine a slot
counter which can be modified by anybody working with your object, ... You can also define
conditions inside the method to further protect your object.

Ezxample: use of a ’setter’

Section Header
+ name := OBJECTI;

Section Public
+ value:INTEGER := 3;
- set_value v:INTEGER <- // Define your own setter
(
(v > 0).if {
value := v;
} else {
value := 0;
}s
);

Section Header
+ name := MAIN_OBJECT;

Section Public
+ slot_object:OBJECTI];
- method <-

(

20 CHAPTER 2. QUICKSTART - FOR BEGINNERS

slot_object := OBJECTL.clone;
slot_object.set_value 4;

)

2.4.2 Local variables

You can define local variables inside your slot. The syntax is the same as a slot. A local variable
often won’t be shared (4). The local variable is initialized with the default value of its type.

+ slot a:INTEGER :INTEGER <-
(+ varl:INTEGER;

+ var2,var3:INTEGER;

+ result:INTEGER;

varl := a *x 2;

var2 := a + 4;

var3 := a - 5;

result := varl + var2 - var3;
result

)

A Note that you must define all the variables in the first lines of your slot, without code
inside this definition list.

+ slot a:INTEGER :INTEGER <-
(+ varl:INTEGER;

+ var2:INTEGER;

+ result:INTEGER;

varl := a *x 2;

var2 := a + 4;

+ var3:INTEGER; // The compiler will stop with an error
var3 := a - 5;

result := varl + var2 - var3;

result

)

2.5 Compilation and running

To compile your Lisaac programs, you’ll simply have to type:
lisaac my_object.1li

It produces two files: my_object.c and my_object, which is an executable. By default Lisaac
uses GCC to compile the produced C code.

Running an object

In your main object, you must only have one slot in the Section Public. It will be executed
at the initialisation of your compiled file.

2.6. HOW TO WRITE 21

Section Header
+ name := OBJECT_TO_RUN;

Section Public
+ value:INTEGER := 3;
- go <-
(
value. print ;

)

When compiling this program there will be an error: 2 entry points. To correct this error, the
value slot must be written in a Section Private, which is a particular Section, visible only in
the current object.

Section Header
+ name := OBJECT_TO_RUN;

Section Private
+ value:INTEGER := 3;
Section Public
- go <-
(
value. print ;

)

For more information on slots, methods and method calls, see section 3.7 page 76 and section
3.8 page 80.

2.6 How to write

2.6.1 Types

There are no built-in types in Lisaac. Every type is from the library (you can check the source
code to see how it is implemented).
The base types you can use are :

e INTEGER with arithmetic operations and lot of other (implemented in NUMERIC object,
parent of all number types)

Notations: 12, 12d: decimal value
1BAh, OFFh: hexadecimal value
01010b, 10b: binary value
140, 6o: octal value

10-000, OFC4_-0ABCh: reading facility

e BOOLEAN: you have 2 ’values’ for BOOLEAN: TRUE or FALSE. Each of those values are also
objects.

e CHARACTER: a simple character

Notations: ’‘a’, 'Z’°, ’}” simple character
A\n’, \t’, \r" escape character

\10\’, \OAh\" code character

22 CHAPTER 2. QUICKSTART - FOR BEGINNERS

e STRING_CONSTANT: composed by multiple characters, cannot be modified, defined between

9

Notations: ”Hello World\n”: simple string

e STRING: string built with functions of the library
e FIXED_ARRAY: an array with fixed lower bound and lots of possible operations
e BLOCK: a block of code, defined between { and }

See chapter on the library for more details.

2.6.2 My first Lisaac program

Here is the classical ”Hello World” program, that writes to the standard output:
Edit File hello_world.1li

Section Header
+ name := HELLO_WORLD;

Section Public
- main := "Hello world !”.print; // the slot executed

Compile with: lisaac hello_world or lisaac hello_world.li It produces an executable file called
hello_world.

In this first Lisaac program, main is the root of the system, or beginning of execution (main
program).

The single instruction in the main program is evaluated (i.e. executed) immediately at
program startup.

Everything is object in Lisaac, as you can see in this example: the slot print is called on
the String object ”Hello world !”.

See chapter 3 for more explanation.

2.6.3 How to print

As we’ve seen before, the method print is a library method in the STRING prototype. But there
is also the same method for NUMERIC types.

"Hello World !”. print;
3.print;
my_string.print; // object of STRING type (created before, of course)

2.6.4 How to read

Now, let’s also read from the standard input:

Section Header
+ name := HOW_TO_READ;

Section Public
- main := // a multi-line main

2.6. HOW TO WRITE 23

(
?Enter your name : 7. print;
10.read_string;
(" Welcome, 7 + 10.last_string) . print;
)3

last_string returns a reference to the last string that was entered from the standard output.
Note the use of the 10 initial prototype, for input-output.

2.6.5 Conditionals: if else

A basic control structure in many languages is the if - then - else construct. In Lisaac, the
then is omitted.! As we’ve seen before, everything is object, this conditonal method deals with
the same pattern: condition.if block_true else block_false

condition is a BOOLEAN object (true or false) on which you call the method if with 2 param-
eters: block_true and block_false (objects of type BLOCK), separated by the keyword else

Section Header
+ name := IF_ELSE;

Section Public
- main :=
(+ gender:CHARACTER; // a local variable

10.put_string ”Enter your gender (M/F) : 7;
10.read_character;

gender := 10.last_character;

(gender == ’M’).if { // conditional
10.put_string “Hello Mister !”; // then part

} else {

10.put_string ”Hello Miss !”; // else part
s
)3

Note that you can use "my_string”.print or 10.put_string ”my_string”. It has the same
effect.

Note the use of a local variable gender to hold the user’s answer. See section 3.10.3 page
88 for local variable declaration in lists of instructions.

The conditional is made of a boolean expression (gender == ’M’) to which the message if
else is sent. See section 3.8 about message sending, and section 3.11.2 page 92 about booleans
and conditionals.

Note that a list of instructions and an expression are the same syntactical construct, between
parentheses. See section 3.10.1 page 84 about return values in lists of instructions.

The { /* .../* } defines a list of instruction like a classic list, but its type is BLOCK and its
evaluation is delayed (see section 3.11 page 89).

if else in Lisaac is not a language construct per se, but a simple method call.

24 CHAPTER 2. QUICKSTART - FOR BEGINNERS

2.6.6 A loop: do_while

Here is a conditional loop in Lisaac:

Section Header
+ name := DO_WHILE;

Section Public
- main :=
(+ gender:CHARACTER;

10.put_string ”Enter your gender (M/F) : 7;

{

10.read_character;
gender := 10.last_character;
}.do_while {(gender !'= 'M’) && {gender '!'= ’F’}}; // conditional loop

(gender == ’M?).if {
10.put_string “Hello Mister !”;
} else {
10.put_string “Hello Miss !”;
s
)3

The input block is executed at least once, and continues as long as the loop condition remains
true. This kind of loop, as well as others, are explained in section 3.11.2, page 92.

2.7 Lisaac: an object oriented language

Lisaac is an object oriented language. You can build an application using more than one object,
it’s what is done when you call methods on library objects. The compiler automatically links
all of the needed objects to your main object (see compiler chapter for more informations).

When you run a program, only the "master” objects (written in capital) are alive. Others
are initialized with NULL and you can’t use them (there will be a compiler stop).

Section Header
+ name := OBJECTI;

Section Public
+ slot <- /*x ... %/

Section Header
+ name := MAIN_OBJECT;

Section Public

- main <-

(+ my_object:0OBJECTI;
OBJECT] .slot; // No problem, you use the ’master’ object
my_object.slot; // Compiler will stop with ’CALL ON NULL’ error

)

2.7. LISAAC: AN OBJECT ORIENTED LANGUAGE 25

If you want to use an object, you have to use the ’clone’ operation from the 'master’ object
(see 2.7.1).

The ’Self’ object

We call self the current living object. When you call a slot inside an object, it implicitly call
the slot of the self object. The keyword Self can be used to explicitly call the self object (like
”this” in Java and C++ or ”Current” in Eiffel).

Section Header
+ name 1= EXAMPLE;

Section Public
+ slot_data:INTEGER := 3;

- main <-
(

Self.slot_data.print; // produces exactly the same code as slot_data.print;

)

A Note that the self is different between each objects, even if they have the same type,
because Self is an object.

2.7.1 Clone

You can clone an object to create a new object of the same type. The method clone is defined
in the OBJECT type in the library.

The slot name must be defined with '+’ if you want to clone it. As seen before, you have to
use clone in order to work with an object.

Section Header
+ name := OBJECTI;

Section Public
+ slot <- /* ... %/

Section Header
+ name := MAIN_OBJECT;

Section Public

- main <-
(+ my_object:OBJECTI;
my_object := OBJECT!.clone;
my_object.slot; // No problem there, my_object is not Null

)

Ezample: memory representation (we don’t represent slots ’set_x’ and ’set_count’ to simplify
the example, see later the real representation)

Section Header
+ name 1= FOO;

26 CHAPTER 2. QUICKSTART - FOR BEGINNERS

Section Public
+ X :INTEGER;
- set_x V:INTEGER <- (x := v;);

- count:INTEGER;

- set_count V:INTEGER <- (count := v;);
Pl +x [e)
-count @
FOO
new_foo := FOO.clone;
P| +x (o)
-count]
FOO
P +x [o
-count
new_foo := FOO cl one

new_foo.set_x 1;
new_foo.set_count 2;

P| +x (o]

- count 2
FOO
P| +x 1

-count

new_f oo

2.7.2 Inheritance

You can define inheritance for objects. You can define as many parents as you want. A parent
is defined in a Section Inherit with slots following the same rules as other slots. A parent is
also an object on which you can send messages. If a slot called on an object is not found in this
object, the lookup algorithm search in the parents to find the correct slot. This algorithm do an
ordered search from the first declared slot in the inheritance section.

FEzxample: Let us see an inheritance with the parent defined with ’-’

Object FATHER

Section Header
+ name := FATHER;

Section Public
+ X :INTEGER;
- incx <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);

2.7. LISAAC: AN OBJECT ORIENTED LANGUAGE

Object SON
Section Header
+ name := SON;
Section Inherit
- parent:FATHER := FATHER; // name of the slot doesn’t matter
Section Public
- change_parent p:FATHER <- (parent := p;);
Pl +x 0
-count @
FATHER
new_son := SON.clone;

P +x 5
-count @

FATHER

[oo

new_son : = SON.cl one
new_son.inc_x;
new_son.inc_count;
P| +x 1
- count E

FATHER

[[parent_

new_son

new_son.change_parent (FATHER.clone);

28 CHAPTER 2. QUICKSTART - FOR BEGINNERS

P [+x [1
71
-count Ll]

FATHER

P| +x 1
-count

[oo

SON

[[paren__]

new_son

FATHER. cl one

new_son.inc_x;
new_son.inc_count;

Pl +x 1
N 2y
count 12}
FATHER
P| +x 2

SON FATHER. cl one

[[parem__]

new_son

Ezxzample 2: Let us see the same example with the parent defined with 4’

Object FATHER

Section Header
+ name := FATHER;

Section Public
+ X :INTEGER;
- incx <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);

Object SON

Section Header
+ name := SON;

Section Inherit
+ parent:FATHER := FATHER;
Section Public
- change parent p:FATHER <- (parent := p;);

Pl +x [o
- count @

FATHER

[[ooren_of

SON

2.7. LISAAC: AN OBJECT ORIENTED LANGUAGE

new_son := SON.clone;

P| +x o]
-count

FatrER T 1

new_son : = SON.cl one

i

new_son.inc_x;
new_son.inc_count;

P| +x 1
-count

FatrER T 1

new_son

i

new_son.change_parent (FATHER.clone);

P +x [1

- count

FATHER

[-]

P| +x 1
-count
II 7y
FATHER. cl one
SON
II
new_son
new_son.inc_x;
new_son.inc_count;
P| +x 1
-count @
FATHER
Pl +x 2
-count

i

new_son

1 FATHER cl one

29

30

CHAPTER 2. QUICKSTART - FOR BEGINNERS

Chapter 0011b

Language Reference

3.1 Lip: Lisaac project file (Lisaac Makefile)

Before entering deeper with the Lisaac language, the first step is to explain how to compile
a Lisaac program using Lip files. They are used to describe compiler options, paths, include
external libs even do inheritance between projects.

3.1.1 Lip Grammar

The Lip grammar is a subset of the Lisaac grammar.

PROGRAM —> { ’Section’ (’Inherit’ | ’Public’ | ’Private’) { SLOT ’;’ } }
SLOT —> '+’ identifier ’:’ TYPE | ’:=’ EXPR.CONSTANT |
| "=’ identifier [identifier ’:’ TYPE] '<—’ EXPR
TYPE —> "BOOLEAN’ | 'STRING’ | ’INTEGER’ | 'LIP’
EXPRAFFECT —> [identifier !!AMBIGU!! ’:=’] EXPR
EXPR > EXPRCMP { (’|’ | ’'&’) EXPRCMP }
EXPR.CMP —> EXPRBINARY { ('=’|"!='">'|"<’|’>="|"<=") EXPRBINARY }
EXPRBINARY —> EXPRUNARY { (’'—’|’+’) EXPRUNARY }
EXPRUNARY —> ('—’ | ’!’) EXPRUNARY
| EXPR_BASE
EXPRLIST —> { EXPRAFFECT ’;’ } | EXPRAFFECT]
EXPR_BASE —> EXPRRECEIVER { ’.’ EXPRMESSAGE }
EXPR_RECEIVER—> EXPR PRIMARY
| EXPRMESSAGE
EXPRMESSAGE —> identifier [EXPRARGUMENT]
| ’if’ °{’ EXPRLIST '}’ [’else’ ’{’ EXPRLIST '}’ |
EXPRARGUMENT—> identifier
| EXPRPRIMARY

EXPRPRIMARY —> EXPR.CONSTANT
| ’(’ EXPR.LIST)’
EXPR.CONSTANT—> integer
| string
| TRUE
| FALSE

3.1.2 Example

Section Inherit
+ parent :STRING;
Section Private

+ is_valid :BOOLEAN;

31

29 CHAPTER 3. LANGUAGE REFERENCE

— src_path <—

(
path (lisaac + "src/«");
);

— front_end <—

(

general _front_end ;
((input_file = 7”) | (input_file = ?lisaac”)).if {
compiler_path;
(is_valid).if {
boost ;

s
)

— back_end <—

(

general_back_end;
(is_valid).if {
execute ”cp lisaac.c ../bin/.”;
execute "cp lisaac ../bin/.”;
b
);

Section Public

— compiler <—
// Compile the Lisaac compiler.

compiler_path;

);
3.1.3 Lip usage and features

The compiler always needs a Lip file to work. By default the compiler will look in the default
Lip file found in the Lisaac environnement variable path LISAAC_DIRECTORY or with the
old way in the path.h. This will appear if tou don’t have a Lip file for your project, otherwise
the compiler will at first read the Lip file in the directory you are calling the compiler. The
compiler look in the current directory and in all parents to find a make.lip file. If no inheritance
is set, the make.lip file from the compiler is inherited. You can also add inheritance by hand
with this two ways:

+ parent : STRING;
+ parent := ”../../../path../ file”;

The + is used for variables and - for methods.

In the Private Section, variables and functions will not appear to the compiler. You can then
use this Section to describe things you want to be done before the compiler is working and to
set options you want to call in the Public Section with the compiler. All compiler options are
thus described in the Public Section.

When you add a public function, It is possible to add a commentary down to the function
definition, then when calling the compiler this description and arguments will appear as show
this example:

Section Public

— debug level :INTEGER <—
// Fix debug level (default: 15)

(

3.2. LEXICAL AND SYNTAX OVERVIEW 33

// some code

)

$lisaac

Usage:
lisaac [<lip_file.lip>] [<input_file[.li]>] {<Options>}

Options:

—debug <level :INTEGER> :
Fix debug level (default: 15)

3.1.4 Advanced Lip usage
Some builtin methiods are part of the compiler:

exit: exit from function as in C

path(STRING): add prototype path location

run(STRING): execute the string as a unix command

get_integer: get command line integer

get_string: get command line string

For describing a path you can use the * symbol as for example: lisaac/personnal/*.

Compiling steps:
1. The compiler look for a make.lip file
the front_end method is runned

compilation and C generation

L

the back_end method is runned

3.2 Lexical and syntax overview

Most features of Lisaac come from the Self language. Like Self, Lisaac does not have hard-coded
instructions for loops or test statements.

The following syntax of Lisaac is described using ”Extended Backus-Naur Form” (EBNF).
Terminal symbols are enclosed between single quotes or are written using lowercase letters.
Non-terminal are written using uppercase letters. The following table describes the semantic
of meta-symbols used:

Symbol Function Description

(/*...*/) grouping a group of syntactic constructions

[/*...*/] option an optional construction

{/*...%/ } repetition a repetition (zero or more times)

| alternative separates alternative constructions

— production separates the left and right hand sides of a production

34

CHAPTER 3. LANGUAGE REFERENCE

3.2.1 Lexical overview

The following rules draw up the list of the final syntactic elements of the grammar:

Symbol Description
section section identifier
identifier slot name, ...
operator unary or binary operator symbol
integer constant of type INTEGER
real constant of type REAL
cap_identifier type name: name of object or prototype
characters constant of type CHARACTER
string constant of type STRING
external external C code
affect symbol assignment slots
style clone comportement
type unary typing operation
result result identifier value
section — "Header" | "Inherit" | "Private" | "Public"
| "Mapping" | "Interrupt" | "Directory"
| "External" | "Insert"
identifier — LOWER_CASE { LOWER_CASE | DECIMAL DIGIT | ’_’ }
operator — OP_CHAR{OP_CHAR} except affect symbol and ’=’ or ’>!=’
integer — OCTALDIGIT{OCTALDIGIT|’_’}’0’
| DECIMAL DIGIT{DECIMAL DIGIT|’_’}[’d’]
| HEXADIGIT { HEXADIGIT|’_’ }’h’
real — DECIMAL_DIGIT { DECIMALDIGIT| >_’} .’ [{DECIMAL DIGIT}]
[’E’ [’+’|’~->] DECIMAL DIGIT { DECIMAL DIGIT }]
cap_identifier — UPPER_CASE { UPPER_CASE | DECIMAL DIGIT | *_’ }
characters — 2?7 (NORMAL_CHAR | ESCAPE_CHAR) *’?
string — >"> { NORMAL_CHAR | ESCAPE_CHAR } * "’
external — 2“2 { NORMAL_CHAR | ESCAPE CHAR } > ©°
affect — M=t ngon | o=
style — 4| 0=
type — "Expanded" | "Separate" | "Strict"
result — "Result"{’_’ DECIMAL DIGIT { DECIMAL DIGIT }}
OP_CHAR — e w0 1R 1A e < |
| e [o= o [/ 0 0 | 0
LOWER_CASE — a’| b ... |z
UPPER_CASE — N B ... |2
OCTALDIGIT S U I P B 4
DECIMALDIGIT — 0’ [°1°|...|°9’
HEXA DIGIT — 0P e L e N LR
NORMAL_CHAR — any character except >\’ and ’’’
ESCAPE_CHAR — O\t [2\b? | \n? | P\£2 | 2\ | 2\v’ | *\a’
N AN A AR AV
| NUMERIC_ESCAPE
NUMERIC ESCAPE — ’\’integer’\’

3.2. LEXICAL AND SYNTAX OVERVIEW 35

Numbers

Notation of integers: 12, 12d: decimal value
1BAh, OFFh: hexadecimal value
01010b, 10b: binary value
140, 6o: octal value

10-000, OFC4-0ABCh: reading facility

Notation of reals: 12.: simple decimal value
12.5: simple real value
1.5E6: value with exposant
10-000.33: reading facility

Characters

Notations: ‘a’, 'Z’, 4" simple character
An’, \t’, \r” escape character
\10\’, \OAh\ " code character

The complete list of escape sequences is:
\a : bell
\b : backspace
\f : formfeed
\n : newline
\r : carriage return
\t : horizontal tab
\v : vertical tab
\ \ : backslash
You can define a number as a string by enclosing it between backslashes. You can specify
the type of the number (d or nothing for decimal, h for hexadecimal, o for byte or octal, b for
binary)
For example: "\123\’, "\123d\’, "\4Ah\’,’\1010\’, *\10010110b\’.

String
A STRING_CONSTANT is composed of multiple characters, and can’t be modified. It is defined

”on

between
Notations: “Hello World\n”: simple string

For a better view of the source code, you can ”cut” a string with the backslash character
followed by the character ’space’, a tabulation or a Carry Return. The string will re-start on
the following backslash character.

For example: ”This is \
\ an example for the \
\ string.” will be transformed by the compiler in: ”This is an example for the string”

36 CHAPTER 3. LANGUAGE REFERENCE

3.2.2 Syntax overview

In order to clarify the presentation for human reading, the grammar of Lisaac is ambiguous.
(the Lisaac parser use precedence and associativity rules to resolve ambiguities.)

PROGRAM — {"Section" (section | TYPE_LIST) { SLOT } } [CONTRACT *;’]
SLOT — style [> (° LOCAL’)*] TYPE_SLOT [’:> (TYPE | > (* TYPE_LIST’)’)]
[affect DEF_SLOT] ’;’

TYPE_SLOT — identifier [LOC_ARG { identifier LOC_ARG }]

|\’ operator’\’’ [[("Left" | "Right") integer] LOC_ARG]
DEF_SLOT — [CONTRACT] EXPR [CONTRACT]
LOC_ARG — identifier’:’> TYPE

| >(>LOCAL’)”’
LOCAL — { identifier [>:> TYPE] *,’ } identifier >:’> TYPE
TYPE_LIST — TYPE{’,’ TYPE}
TYPE — [type] PROTOTYPE
PROTOTYPE — cap_identifier [> [> TYPE_LIST { identifier TYPE_LIST} ’]’]
EXPR — EXPR_PREFIX ([affect EXPR] | { operator EXPR_PREFIX })
EXPRPREFIX — { operator } EXPR_MESSAGE
EXPR MESSAGE — EXPRBASE{’.’ SEND_MSG }
EXPR_BASE — "01d"EXPR

| EXPR_PRIMARY

| SEND_MSG
EXPR PRIMARY — "Self"

| result

| PROTOTYPE

| real

| integer

| characters

| string

| > GROUP’)’

| >{’> [LOC_ARG’;’] GROUP’}’

| external [’:> [*(°JTYPE[’(° TYPELIST’) 1 [’)’ 1]
GROUP — DEF_LOCAL{EXPR’;’ } [EXPR{’,’ {EXPR’;’ } EXPR }]
CONTRACT — ?[?DEF_LOCAL{ (EXPR’;’ |"...")}"’]’
DEF_LOCAL — {style LOCAL’;’ }
SEND_MSG — identifier [ARGUMENT { identifier ARGUMENT }]
ARGUMENT — EXPR_PRIMARY

I

identifier

3.3 Sections identifiers

The identifier of a section makes it possible to choose the interpretation of the slots which are
in this section. The interpretation of the slots relates to various aspects:

e heading and versioning information (cf. 3.3.1)

e the mode of application of the lookup mechanism: inheritance slot (see 3.3.2) or normal
message slot

e the exception mode (see 3.3.5)

3.3. SECTIONS IDENTIFIERS 37

e the data structure mapping mode (see 3.3.4)
e the link with C code mode (see 3.3.6)

e the classical code section (see 3.3.7)

3.3.1 The Header section

The Header section is mandatory. It is used to enumerate the general parameters of the pro-
totype. In this section, only the slots containing constants (character string, or numerical
constants) are authorized. This section must include the name slot which indicates the name of
the prototype itself.

Other optional slots can be added to complement prototype. The category slot indicates
the category of the prototype in regard to its level of protection against the other prototypes.
There are 3 levels of protection and a special level: KERNEL, DRIVER, APPLICATION and DOCILE.

e A KERNEL object can only use objects of KERNEL level.
e A DRIVER object can use objects of KERNEL or DRIVER level.
e An APPLICATION object can use objects of all levels.

A DOCILE object can be used by any other object and take the category of this object. Objects
of the library are DOCILE.

In addition, some conventions regarding the names of the slots have been fixed for the purpose
of maintenance and to ensure consistency of the information of the Header section.

You can’t modify any slot during execution: imagine for example the consequences of mod-
ifying the category slot !

Slot name Type Description
‘name’ PROTOTYPE prototype’s name (mandatory)
‘category’ KERNEL, DRIVER protection level
APPLICATION,DOCILE default is APPLICATION
'version’ REAL version number
"date’ STRING_CONSTANT release date
‘comment’ STRING_CONSTANT Comment
"author’ STRING_CONSTANT author’s name
‘bibliography’ STRING_CONSTANT programmer’s reference
"language’ STRING_CONSTANT encoding country language
"bug_report’ STRING_CONSTANT bugs report list
‘type’ external C equivalent type (if any)
"default’ EXPRESSION Default value of the prototype (see 3.6.1)
‘external’ external C code which will be included in the C compiled file
lip’ piece of code Include Lip code

Section Header
+ name := MY_PROTOTYPE;
- category := APPLICATION;
- version := 1;
- date := 72004/06/05";
- comment := "An example";
- author := "Jerome Boutet";

38 CHAPTER 3. LANGUAGE REFERENCE

- bibliography := "http://www.isaacos.com";
- language := "English";
- bug_report := "None :-)";

- type := ‘unsigned long°‘;

- default := 100;

- external := ‘#INCLUDE <STDIO.H>‘;
- lip := (add_lib "-1X11");

Objects and clone
There are 3 kinds of objects, defined with the slot name.

e Slots defined with the the + symbol,
+ name := MY_NAME;

are clonable. You can use the MY_NAME ”"master” object and every clone of it. Be carefull,
in this case the object must inherit an object containing the clone method (in most of the
cases object OBJECT).

e Slots defined with the the - symbol,
- name := MY_NAME;

are reserved for parallel execution of prototypes. They give an “agent” prototype (?7).
This kind of prototype can be the entry point of an application or a prototype running
concurrently (see 3.14).

e Slots defined with the the + symbol and the Expanded keyword, like
+ name := Expanded MY_NAME;

are expanded ones. You don’t have to clone to use the object: every object of this type is
alive. In most cases expanded objects are simple objects, such as INTEGER, CHARACTER,
BOOLEAN,. . . Usually you have to define the slot default and a type associated.

3.3.2 The Inherit section

This section describes the inheritance slots of the object. Like in Self, a prototype can have
several parents slots (multiple inheritance is allowed). The only limitation is that parents and
sons must have the same category. The slots of this section being mostly used by the lookup
mechanism, only slots without arguments are authorized.

Most of the time, a slot of the Inherit section refers to another prototype, by simply indicating
its name. It is also possible to define a parent slot using an instruction list.

A It is not possible to define a parent slot using an instruction block, because that does
not have significance.

The assignment of a parent slot may occur at any time during execution to dynamically
change the ancestors of the prototype. A parent slot with no value at a given time (NULL) is
prohibited by the lookup algorithm (see section 3.3.2 page 50).

The number of inheritance slots is fixed in the source code. Adding a new inheritance slot
during the execution is not allowed in Lisaac.

3.3. SECTIONS IDENTIFIERS 39

Slots in the Inherit section are not visible from outside of the object itself. Accessing a
parent slot simply returns the corresponding parent object (if any).

The order in which the slots are declared is very important for the lookup algorithm while
seeking a message. The inheritance slots are examined with respect to the order in which the
source text is written, in a depth-first way, without taking into account possible conflicts (see
lookup algorithm 3.3.2). If a slot called on an object is not found in this object, the lookup
algorithm searches in the parents to find the correct slot and returns the first found.

Section Header
+ name := FATHERI];

Section Public
+ slotl <= /% ... %/
+ slot2 <- /% ... %/

Section Header
+ name := FATHERZ2;

Section Public
+ slot2 <- /*x ... %/
+ slot3 <- /% ... %/

FATHERL FATHER2

Section Header
+ name := SON;

Section Inherit
- parentl:FATHERI :
- parent2:FATHER2 :

FATHER];
FATHERZ;

Section Header
+ name = TEST;

Section Public
- main :=
(+ object_son:SON;

40

object_son := SON.clone;

object_son.slotl; // From FATHER1

object_son.slot2; // From FATHERI

object_son.slot3; // From FATHER2
)3

CHAPTER 3. LANGUAGE REFERENCE

You can also redefine slots in the sons. Slot must follow the same typing profile as its parent
(for parameters and result, see also 3.4.2 page 61) but you can change the kind of slot (4, - and

Expanded).

Section Header

+ name := FATHERI];

Section Public

+ slotl v:INTEGER :INTEGER <- /% ... */
+ slot2 <- /* ... %/
Section Header
+ name := FATHERZ2;
Section Public
+ slot2 <- /* ... %/
+ slot3 t:INTEGER <- /* ... %/
Section Header
+ name := SON;
Section Inherit
- parentl:FATHER] := FATHERI;
- parent2:FATHERZ := FATHERZ;
Section Public
- slotl v:INTEGER :INTEGER <- /% ... %/

+ slot3 t:INTEGER <- /* ... x/

Section Header
+ name 1= TEST;
Section Public
- main :=
(+ object_son:SON;
object_son := SON.clone;
object_son.slotl 4.print;
object_son.slot2;
object_son.slot3 5;

// From SON
// From FATHERI1
// From SON

// slotl is now shared

(redefinition)

(redefinition)

3.3. SECTIONS IDENTIFIERS 41

The name of the inheritance slot doesn’t matter. We often named it ”parent” but it’s for
more visibility than anything, it’s not a reserved keyword. But it’s mandatory to be precise
about the type of the parent, as for any data slot.

As every slot in Lisaac, inheritance slots have 3 different behaviours.

Shared inheritance

A parent can be defined with the the - symbol:

Section Inherit
- parent:FATHER := FATHER;

In this case every clone of the object share the same parent object. If a son object change its
parent, every clone of this son have their parent changed.

Object FATHER

Section Header
+ name := FATHER;

Section Public

+ X ! INTEGER;

- incx <- (x :=x+1;);

- count:INTEGER;

- inc_count <- (count := count + 1;);

Object SON
Section Header
+ name 1= SON;
Section Inherit
- parent:FATHER := FATHER;
Section Public
- change _parent p:FATHER <- (parent := p;);
Pl +x [o
-count @

FATHER

new_son := SON.clone;

42 CHAPTER 3. LANGUAGE REFERENCE

P +x [o

-count @

FATHER

[[parent

new_son : = SON.cl one
new_son.inc_x;
new_son.inc_count;
P| +x 1
- count E
FATHER

new_son

new_son.change_parent (FATHER.clone) ;

P[+x [1
-count E
FATHER
Pl +x 1

SON FATHER. cl one

[oo

new_son

new_son.inc_x;
new_son.inc_count;

P [+x 1
>l
-count {2]
FATHER
P [+x 2
-count

[[paren_]

SON

[oo

new_son

FATHER. cl one

3.3. SECTIONS IDENTIFIERS 43

Non shared inheritance
A parent can be defined with the the + symbol:

Section Inherit
+ parent:FATHER := FATHER;

In this case every clone of the object share the same parent object at its creation. If a son object
change its parent, other clones of this son haven’t got their parents changed.

Object FATHER

Section Header
+ name := FATHER;

Section Public
+ X ! INTEGER;
- incx <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);

Object SON

Section Header
+ name := SON;

Section Inherit
+ parent:FATHER := FATHER;
Section Public
- change_parent p:FATHER <- (parent := p;);

Pl +x [o
- count @

FATHER

new_son := SON.clone;

[Craent o]
SON
pl +

X O
- count :E]

FatrER T 1

[[oaren_of

SON

[rarent o]

new_son : = SON.cl one

new_son.inc_x;
new_son.inc_count;

44 CHAPTER 3. LANGUAGE REFERENCE
Pl +x [1
-count E
Fatier 1 1
II
SON
II
new_son.change_parent (FATHER.clone) ;
Pl +x [1
-count @
FATHER
P| +x 1
-count

1 FATHER cl one

i

new_son

new_son.inc_x;
new_son.inc_count;

P| +x 1
- count @
FATHER
P| +x 2
- count
[Cpaent_of r
FATHER. cl one
SON

[[parent_of

new_son

Expanded inheritance

A parent can be defined with the the 4+ symbol and the Expanded keyword:
Section Inherit

+ parent: Expanded FATHER;

A In this case, you don’t have to affect the value of the parent.
You have an ”auto-clone” for parents: each time you clone a son, you have the clone of its
parents.

Object FATHER

Section Header
+ name := FATHER;

3.3. SECTIONS IDENTIFIERS

Section Public

+ X ! INTEGER;
- incx <- (x :=x+1;);
- count:INTEGER;
- inc_count <- (count := count + 1;);
Object SON
Section Header
+ name := SON;
Section Inherit
+ parent: Expanded FATHER;
Section Public
- change_parent p:FATHER <- (parent := p;);
P[+x [o P [+x [o
-count -count (o]
FATHER FATHER. cl one

|| + parent Exp

SON

new_son := SON.clone;

P| +x o P| +x O J_‘
-count -count

FATHER FATHER. cl one

Pl +x (o]

-count

[[_parent 5o 1

SON

[t Gparent &0 J——

new_son

FATHER. cl one

new_son.inc_x;
new_son.inc_count;

P| +x 0] P| +x (0] J_‘
-count -count

FATHER FATHER. cl one

Pl +x 1

-count
I

FATHER. cl one
SON

[t G parent 50—

new_son

45

46

CHAPTER 3. LANGUAGE REFERENCE

new_son.change_parent (FATHER.clone) ;

+X [e)

-count

+X

[e)

-count

FATHER

[[parent &0]

SON

FATHER. cl one

FATHER: €l.ane-

+X [O

|| + parent Exp I

new_son

new_son.inc_x;
new_son.inc_count;

-count

FATHER. cl one

+X o]

- count

+X

[o

-count

FATHER

|| + parent Exp

SON

|I + parent Exp I

FATHER. cl one

FATHER-cl.ane-:

+X [1

new_son

Note: This kind of inheritance is similar to inheritance in object oriented languages based

on class.

A parent can also be defined with the the - symbol and the Expanded keyword. The parents

are now shared.

Section Inherit
parent : Expanded FATHER;

The value of the parent is already initialised.

-count

Object FATHER

Section Header
+ name

FATHER;

Section Public

+ INTEGER;
incx <- (x
count : INTEGER ;
inc_count <- (count

X

x+1;)3

count + 1;

)

Object SON

FATHER. cl one

3.3. SECTIONS IDENTIFIERS

Section Header
+ name := SON;

Section Inherit
- parent: Expanded FATHER;
Section Public

- change _parent p:FATHER <- (parent := p;);
P +x o P +x o
- count -count (o]
FATHER FATHER. cl one
I
SON
new_son := SON.clone;

P[+x o P [+x [o
- count -count (o]

- parent Exp

SON

[parent 50|

new_son

new_son.change_parent (FATHER.clone);

FATHER FATHER. cl one
| !
SON
[parent 50 -
new_son
new_son.inc_x;
new_son.inc_count;
P[+x o P [+x [1
- count -count 1
FATHER FATHER. cl one

47

48 CHAPTER 3. LANGUAGE REFERENCE

P[+x o P [+x [o
- count -count 1

FATHER FATHER. cl one

|| - parent Exp

SON

|| [parent Exp M

new_son

new_son.inc_x;
new_son.inc_count;

P| +x (o] P| +x 1
- count - count 2

FATHER FATHER. cl one

[[parent_ &0]

SON

[Cparem B0 _H

new_son

Immediate/delayed evaluation

A The evaluation of the heritage slots depends on their order of declaration
e Evaluation after the loading of the prototype:

Section Inherit
+ parent:EXPR := EXPR;

e Evaluation every time the lookup algorithm reaches this slot (this should be avoided,
because it is obviously very expensive):

Section Inherit
- parent:OBJECT <- search_parent;

Here, search_parent is a method to evaluate the parent.

Other example:

Section Inherit
- parent:OBJECT <-
(+ result:0BJECT;
(flag_depend) .if {
result := VALUE;

3.3. SECTIONS IDENTIFIERS 49

} else {
result := AFFECT;

+s
result

)

A the flag_depend slot must be present in the lower of the inheritance tree.

Static type and visibility of the slots

The static type of a slot parent must correspond to the first common ancestor of the parents
possible dynamics.
About the visibility of the slots, the static tree of heritage shows the slots accessible.

Section Header
+ name := A;

Section Public

+ bar <- /x ... */
+ foo <- /* ... %/

Section Header
+ name := B;

Section Inherit

+ parent:A := A;
Section Public

+ bar <- /x ... %/

+ toto <- /% ... %/

Section Header
+ name := C;

Section Inherit

+ parent:A := A;
Section Public

+ titl <- /% ... %/

+ foo <= /% ... x/

Section Header
+ name := D;

Section Inherit
+ parent:A <-

(

50 CHAPTER 3. LANGUAGE REFERENCE

e // code that can be dynamically B or C
)3

Section Public
+ new <- /% ... %/
+ toto <= /*x ... */
|Prototype "A |
slot "bar"
slot "foo"
% A
7,
/,
/,
/
|Prot otype "B" |

slot "bar"

b
/
7/
/
\\,-.(Sl ot Not accessible from Sel f.
£ Xor .
Im‘m Sl ot accessible from Sel f.
- T | m————— » Dynanic inheritance.
slot "new —) St atic inheritance.
slot "toto"
Sel f —»
Section Header
+ name := TEST;
Section Public
- main :=
(+ object_d:D;
object_d := D.clone;
object_d.bar; // Ok, from A or from B (dynamic inheritance)
object_d.foo; // 0k, from A or from C (dynamic inheritance)

object_d.new; // 0k, from D
object_d.toto; // Ok, from D (redefinition in D)
object_d.titi; // Error: slot not accessible

)

The lookup algorithm

The lookup algorithm is the name of the algorithm used to resolve message send (or dynamic
dispatch). It determines which precise method is called.

Let M be the complete name of the called method, with commas or keywords, if any (see slot
names in section 3.7 page 76). Let R be the receiver of the message send; in case the receiver is
implicit, R is self. Let T be the dynamic type of R.

The lookup algorithm works as follows:

1. Look for method M in the current prototype 7', searching code slots.
Since there is no overloading in Lisaac, there should be at most one slot matching M.
If one was found, the lookup algorithm stops, the target method has been found and the
message send can proceed.
If none was found, continue with step 2.

3.3. SECTIONS IDENTIFIERS 51

2. Recursively look for method M in all the parents of the current prototype 7', until one is
found or all parents have been examined.
If the matching method has been found, the lookup algorithm stops, the target method
has been found and the message send can proceed.
If none was found, which indicates an error from the developper, an error message is
emitted.

Note that at step 1, since there is no overloading in Lisaac, there should be at most one slot
matching M. The order of declaration of code slots in 7" is thus irrelevant.

Conversely, the order of declaration of parent slots is highly relevant. Indeed, during step
2, parent slots are searched recursively, that is in depth-first manner. They are also examined
in the order of declaration in the source code (top to bottom). As a consequence, in case of
multiple inheritance, if n parent slots (2 < n) refer to prototypes that contain the searched
method M, it is the M contained in the first of those n parent slots that shall be called. Thus

multiple inheritance conflicts in Lisaac are solved in a (depth-first) “first arrived, first served”
manner.

- lookup msg:STRING set_visited v:SET[OBJECT] :BLOCK <-
(+ result:BLOCK;
+ 1:INTEGER;

(! v.has self).if {
// cycle detection.
v.add self;

// Search in current object.
i := list.lower;
{(i <= list.upper) && {result = NULL}}.while_do {
(list.item i.name == msg).if {
// message found.
Result := list.item i.value;

(result = NULL).if {
// Search in parent object.

i := parent_list.lower;

{(i <= parent_list.upper) && {result = NULL}}.while_do {
result := parent list.item i.lookup msg set_visited v;
i=1i+1;

52 CHAPTER 3. LANGUAGE REFERENCE

Resending messages: The equivalent of super in Smalltalk or resend in Self.

A message call applied to some parent slot is the natural mechanism to achieve he equivalent of
super in Smalltalk or resend in Self. This means that the message is sent to the parent with the
current object context. You can bypass the lookup algorithm by precising the parent on which
you call the slot.

Section Header
+ name := FATHERI;

Section Public
- method <- /*x ... *x/

Section Header
+ name := FATHERZ;

Section Public
- method <- /*x ... %/

Section Header

+ name := SON
Section Inherit
+ parentl := FATHERI];
+ parent2 := FATHERZ;
| | +parentl @ ‘l P[- method ;,-'—chode |
+par ent 2 [FATHERL
SON
y
P[- nethod g-,—ﬁlcode |
FATHER2
method;
| | +tparentl @ > P[- method code |
+par ent 2 [4 FATHERL
ISO\‘ Instruction Pointer
l’seIF)
- v
P[- nethod code |
FATHER2
parent2.method;

I [+parentl @ =i Pl - nmethod g'-l—hlcode |
@

+par ent 2 EATFERL

e
FATHER2

Instruction Pointer

3.3. SECTIONS IDENTIFIERS o3

3.3.3 The Insert section

Slots defined in an Insert section are almost equivalent to Inheritence slots. The difference
resides in the fact that the return type is not a parent of your prototype. In other words, your
prototype isn’t a sub-type of a slot’s return type residing in section Insert.

Note 1: Expanded prototypes can only use section Insert, not the Inherit section.

Note 2: The slots order is important regarding the search (lookup algorythm) of a message.
You can put as many Inherit or Insert sections at the beginning of your prototype.

3.3.4 The Mapping section

The Mapping section purpose is to format data slots description according to some fixed hard-
ware data structure.

In such a section, the compiler follows exactly the order and the description of slots as they are
written to map exactly the corresponding hardware data structure.

Thus, one is able to write data slots description according to the hardware to handle.

You can only define slots with the + symbol, and only datas (not code).

Otherwise, these attributes are used exactly as the others not in the mapping section (reading
or writting).

Section Mapping

+ x1:UINTEGER'32; // 4 bytes, unsigned
+ X2:UINTEGER'S; // 1 byte, unsigned
+ X3:INTEGER'8; // 1 byte, signed
+ x4:UINTEGER'16; // 2 bytes, unsigned
+ X5 :INTEGER 32; // 4 bytes, signed
+ X6:INTEGER 16; // 2 bytes, signed
+ X7:UINTEGER'16; // 2 bytes, unsigned

These prototype match exactly a 16 byte physical structure.

x6: | NTEGER_16
x7: U NTEGER 16 Menory

MAPPED_OBJECT

M[+ x1: U NTEGER 32
+ x2: U NTEGER_8
. = o [x6 [x
+ x3: | NTEGER_8 08h X5
+ x4: U NTEGER 16 oan 2 | G | X
+ x5: | NTEGER 32
00h X1
T
T

A Slots inside some Mapping section are considered private for any other objects. Slots
can only be defined with the + property. No slot outside this section can be defined with the

+ property.

Section Mapping
+ x1:USHORTINT;
- X2:UINTEGER; // Compiler will stop in error

54 CHAPTER 3. LANGUAGE REFERENCE

Section Public
+ count:INTEGER := 3; // Compiler will stop in error
- slot:INTEGER <- /* ... x/ // Ok

The mapping can also be used to represent files.

3.3.5 The Interrupt section

The goal of the Interrupt section is to handle hardware interruptions.

In this section you can define methods (code slots) that will be executed only while there is an
interrupt associated.

Each slot is associated with one of the processor’s interruptions [Hum90].

These slots differ from others in their generated code. For example, their entry and exit codes
are related to the interrupt processing.

Their invocations are asynchronous and borrow the quantum of the current process.

Generally, these slots are little time consumers and they don’t require specific process’ context
for their executions.

It is thus necessary to be careful while programming such slots to ensure the consistency of the
interrupted process.

Define your method (without return value, because you don’t explicitly call it) as any other
classical method.
Then associate the adress of your method with the effective interrupt jump adress (it depends
on your architecture). This can be done using a system mapped object.
When your interrupt physically happens, there is the call of your associated method, which
returns a pointer on the code.
The compiler will not optimize local variables of your interrupt method because of its particu-
larity: the call depends on the context and cannot be anticipated during compilation.

Section Interrupt
- interrupt_01 <- /% ... */;

|E| - interrupt_01

| NTERRUPT_OBJECT

I'nt #02
Int #01
I'nt #00

Physical Interrupt table

You must define as C external (3.15 page 107) the following macros: __BEGIN_INTERRUPT__
and __END_INTERRUPT__. These macros will be executed every time an interrupt function is
activated. The code of these macros depends on the architecture. Example for X86 follows.

Section Header

+ name := INTERRUPT_MANAGER;
- category := KERNEL;
- external := ¢

#define __BEGIN_INTERRUPT__ volatile unsigned long eax;
volatile unsigned long ebx;

3.3. SECTIONS IDENTIFIERS 95

volatile unsigned long ecx;
volatile unsigned long edx;
volatile unsigned long esi;
volatile unsigned long edi;

asm volatile (

"/ BEGIN INTERRUPT */

movl %%eax, %0

movl Y%%ebx,%1

movl %%ecx,%2

movl %%edx,%3

movl %%esi,%4

movl %%edi,%5

/* BEGIN CODE */"
"=m" (eax),"=m" (ebx),"=m" (ecx),"=m" (edx),"=m" (esi),"=m" (edi)

: /* no input */
"eax","edx","ecx","ebx","ebp","esi","edi", "memory");

#define END_INTERRUPT__ asm volatile (

"/% END CODE */

movl %0, %%eax

movl %1, %%ebx

movl %2,%%hecx

movl %3, %%edx

movl %4,%%esi

movl %5, %%edi

movl %%ebp,%lkesp

popl %%ebp

iret

/* END INTERRUPT x*/"

: /* no output */
"m" (eax),"m" (ebx),"m" (ecx),"m" (edx) ,"m" (esi),"m" (edi)
"eax","edx","ecx","ebx","ebp","esi","edi", "memory");

3.3.6 The External section

When a slot is define in Lisaac, its real name (the name of the slot after compilation) is different
in the produced C code because of the compiler (optimization, specialization, ...).

You can define a special section, Section External, which specified that the function here
define must keep their name after compilation.This capability is very useful when you want to
link the produced C code with existing code.

This section is more detailed in section 3.15 page 107.

3.3.7 Other sections

Other sections shared the same objective: they all are section of code and datas. The difference
between these sections are only the visibility of their slot (method and datas). There is 4 kind of

56 CHAPTER 3. LANGUAGE REFERENCE

sections of this type: the Private section, the Public section, the Directory and the prototype
list section.

Section Private
It’s the most restrictive section. The slots defined in it are only accessibles inside the current
object (the self object) but not for its descendants.

Section Interrupt, Section Mapping and Section Inherit are considered Private.

Section SELF
The slots defined in it are only accessible inside the current object but also for its descendants.
Note that its the keyword SELF is written in capital, which is a different as other keywords.

Section prototype list

This section is defined with the keyword Section followed by a list of prototypes (in capital, sep-
arated by ,) which are allowed to call the slots (example: Section INTEGER,BOOLEAN,STRING).
The self object has also the right to call it.

Section Directory

This type of section gives access to all prototypes contained in the same directory as your
prototype. Prototypes contained in a sub-directory also have access to these slots. It permits
easy access securisation while organizing your prototypes into directories and sub-directories.

Section Public
It’s the most permitive section. The slots defined in it are accessibles from all the objects.

You can define as many sections as you want.

Section Header
+ name := FIRST;

Section Private

+ slot_private <- /* ... */
Section SELF

+ slot_self <- /* ... %/
Section FIRST

+ slot_listl <- /* ... x/
Section FIRST,SECOND

+ slot_list2 <- /* ... */

Section Public
+ slot_public <- /x ... x/

3.3. SECTIONS IDENTIFIERS

o7

Object slot_private slot_self slot_listl slot_list2 slot_public
self object only, Not its de- OK OK OK OK OK
scendants

self object and its descen- X OK OK OK OK
dants

Type FIRST (‘master’ ob- X X OK OK OK
ject FIRST all its clones

and descendants)

Type SECOND (‘master’ X X OK OK OK
object SECOND all its

clones and descendants)

Any type except FIRST X X X X OK

and SECOND

Examine this example in details:

Section Header
+ name := FIRST;

Section Private

+ slot_private <- /x ... x/
Section SELF
+ slot_self <- /x ... x/
Section FIRST
+ slot_listl <- /% ... *x/
Section FIRST,SECOND
+ slot_list2 <- /% ... *x/
Section Public
+ slot_public <- /*x ... *x/
+ slot_test <-
(
slot_private; // Allowed
slot_self; // Allowed
slot_list1; // Allowed
slot_list2; // Allowed
slot_public; // Allowed
);

+ slot_test2 <-

(+ object_first:FIRST;
object_first := FIRST.clone;
object_first.slot_private;
object_first.slot_self;
object_first.slot listl;
object_first.slot_list2;
object_first.public;

)3

// Forbidden
// Forbidden
// Allowed
// Allowed
// Allowed

58 CHAPTER 3. LANGUAGE REFERENCE

Section Header
+ name := SECOND;

Section Public
+ slot_test <-
(+ object_first:FIRST;

object_first := FIRST.clone;
object_first.slot_private; // Forbidden
object_first.slot_self; // Forbidden
object_first.slot_list1; // Forbidden
object_first.slot_list2; // Allowed
object_first.public; // Allowed

)

Section Header
+ name := OTHER;

Section Public
+ slot_test <-
(+ object_first:FIRST;

object_first := FIRST.clone;
object_first.slot_private; // Forbidden
object_first.slot_self; // Forbidden
object_first.slot_list1; // Forbidden
object_first.slot_list2; // Forbidden
object_first.public; // Allowed

)

A The call of a slot in Section Private or Section SELF is restricted to the implicit
call. You can’t use the Self object.

Section Header
+ name := FIRST;

Section Private

+ slot_private <- /* ... */
Section SELF
+ slot_self <- /x ... %/

Section Public
+ slot_test <-

(
slot_private; // Allowed
slot_self; // Allowed
Self.slot_private; // Forbidden
Self.slot_self; // Forbidden

)

Accessibility and inheritance
Inheritance share the same accessibility between parents and sons. For example, if a slot is

3.3. SECTIONS IDENTIFIERS 29

defined in a Public section in a parent, it is also Public for its descendants. Note that a
Private slot is not visible from the descendants. If you define a visibility for a prototype,
it is also available for its descendants. Look at the accessibility as if the considered slot was
effectively in the current object and not in its parents.

Section Header
+ name := FATHER;

Section Private

+ slot_private <- /x ... x/
Section SELF

+ slot_self <- /x ... x/
Section FATHER

+ slot_listl <- /% ... %/
Section FIRST

+ slot_list2 <- /% ... %/

Section Header
+ name := SON;

Section Inherit

+ parent:FATHER := FATHER;
Section Public

+ slot_test <-

(
slot_private; // Forbidden
slot _self; // Allowed
slot_list1; // Allowed (FATHER and all its descendants)
slot_list2; // Forbidden
);

+ slot_test2 <-
(+ object_son:SON;

object_son := SON.clone;
object_son.slot_private; // Forbidden
object_son.slot_self; // Forbidden
object_son.slot_list1; // Allowed
object_son.slot_list2; // Forbidden

)

Section Header
+ name := FIRST;

Section Public
+ slot_test <-
(+ object_son:SON;
object_son := SON.clone;
object_son.slot_private; // Forbidden

60 CHAPTER 3. LANGUAGE REFERENCE

object_son.slot_self; // Forbidden
object_son.slot_list1; // Forbidden
object_son.slot_list2; // Allowed

)

Accessibility restricted to a prototype is also valid for its descendants. In the previous
example, call on slot_list2 is allowed in all the objects of FIRST type and for all its descendants.

Section Header
+ name := SON_FIRST;

Section Inherit

+ parent:FIRST := FIRST;
Section Public

+ slot_test <-

(+ object_son:SON;

object_son := SON.clone;
object_son.slot_private; // Forbidden
object_son.slot_self; // Forbidden
object_son.slot_list1; // Forbidden
object_son.slot_list2; // Allowed

)

You must also keep the same accesibility type when you redefine a slot in a son.

Section Header
+ name := FATHER;

Section Private

+ slot_private <- /* ... */
Section FIRST
+ slot_listl <- /% ... x/

Section Header
+ name := SON;

Section Inherit

+ parent:FATHER := FATHER;
Section Private
+ slot_private <- /x ... %/ // 0k, it respects the same accessibility

Section Public
+ slot_listl <- // Error: accessibility is different between FATHER and SON

V£ T Vi

3.4 Type names

Type names are noted with prototype names. A keyword in uppercase (capital letter) identify
them.

+ color:INTEGER;

3.4. TYPE NAMES 61

3.4.1 Genericity

To ease the implementation of containers like arrays, linked lists and dictionaries for example,
we also added a form of genericity (parametric types) such as the one defined in Eiffel [Mey94].

+ array:ARRAY [CHARACTER] ;

To define such a prototype using genericity, you’ll define between ’[" and ’]’ the abstract types
used, separated by commas ’, or by keywords. In the definitions of slots, you can use your
abstract type

Section Header
+ name := GENERICITY_EXAMPLE[E,F];

Section Public
- slot:F <-
(+ elt:E;
/* ... x/
);

A The name of the prototype is the entire name, with ’[" and ’]’.

Section Header
+ name := TEST;

Section Public

- slot <-

(+ gen:GENERICITY_EXAMPLE; // Error: the type does not exist
+ gen2:GENERICITY_EXAMPLE [STRING,INTEGER]; // OK
VA T

)

Note that when you use the genericity-prototype, you have to precise the real types you want.

3.4.2 Invariant’s type control

The redefinition of a slot must have the same profile as her parent (standard type and name for
the arguments and the return value).

Section Header
+ name := FATHER;

Section Public
+ to_string arg:INTEGER :STRING <- /*x ... */

Section Header
+ name := SON;

Section Inherit
- parent: FATHER:= FATHER;
Section Public

62

+ to_string arg:INTEGER :STRING <- /* ...

Section Header
+ name := SON;

Section Inherit
- parent:FATHER
Section Public

:= FATHER;

CHAPTER 3. LANGUAGE REFERENCE

*x/ // Ok, follow the same profile

+ to_string arg:REAL :ARRAY|[CHARACTER| <- // Error: not the same profile

V2 T Vi

3.4.3 Particular type: SELF type

The type SELF represents a prototype which is exactly the same type as the current prototype.

Section Header

+ name := EXAMPLE;

Section Public

+ slot:SELF <- (/*x ...

Here the SELF type is exactly EXAMPLE.
Another example using inheritance:

Section Header

+ name := FATHER;

Section Public
- create:SELF <-
(+ result:SELF;

result := SELF.clone;

result

)
Section Header
+ name := SON;

Section Inherit
- parent:FATHER

Section Header
+ name := TEST;

Section Public
- main:=

:= FATHER;

(+ object_father:FATHER;
+ object_son:SON;

x/);

3.4. TYPE NAMES 63

object_father := FATHER.create; // Type FATHER
object_son := SON.create; // Type SON
)3

We can see with this last example that even if the slot which returns SELF type is defined in a
parent, it’s the current object which define the real type of SELF.

SELF type is available only if the result is calculated. You can’t write
- slot:SELF;

Because if you have inheritance and the slot SELF in the parent, in the children the type is
different.

Section Header
+ name := FATHER;

Section Public
- a:SELF;
Section Header

+ name := SONI;

Section Inherit

- parent:FATHER := FATHER;
Section Public
- affect_.a <- (a := SELF;); // Here SELF is SONI1

Section Header
+ name := SON2;

Section Inherit

- parent:FATHER := FATHER;
Section Public
- affect_.a <- (a := SELF;); // Here SELF is SONI1

Section Header
+ name := TEST;

Section Public

- main :=

(+ object_sonl:SON1;
+ object_son2:SON2;
object_sonl := SON1.clone;
object_son2 := SON2.clone;
object_sonl.affect_.a; // 0k
object_son2.affect.a; // Error of typing, a is type SON1

// and can’t be then SON2

26 CHAPTER 3. LANGUAGE REFERENCE

3.4.4 Particular type: FIXED_ARRAY|[E] type
The FIXED_ARRAY[E| type is the object representation of a values’ vector.

+ my_vector:FIXED_ARRAY[INTEGER];

my_vector := (0, 1); // It’s one vector with 2 values.
(0, 1, 2, 3); // It’s one vector with 4 values.

my_vector :

The prototype FIXED_ARRAY[E] becomes a non-mutable collection (static)

3.5 Prefix of types

3.5.1 Expanded type

If the slots use the keyword Expanded, its value is cloned and embedded (in memory) in the
prototype. The keyword can be used either with + or - (see 3.6.4). If the slot name of a
prototype is followed by Expanded, slots of this type are automatically Expanded.

For example:

Section Header
+ name := Expanded F0OO;

Section Public
- slot_foo:F00; // <=> Expanded FOO

3.5.2 Strict type

If a slot use the keyword Strict, its value is exactly this type. You can’t affect this slot with
a son of the same type. It establish a strong restriction permitting exchange and manipulation
between referenced and expanded objects (see ?77). Strict can only be used on reference objects.
Strict Expanded is therefore illegal.

If the slot name of a prototype is defined with the Strict word, slots of this type are
automatically Strict.

For example:

Section Header
+ name := Strict FOO;

Section Public
- slot_foo:F00; // <=> Strict FOO

3.6 Slots

3.6.1 Default value of a slot according to its type.

A default value can also be defined in the slot default in the Section Header. It can be a
value or an expression evaluated at initialisation of the slot or the local slot (at start of execution
of the method).

3.6. SLOTS 65

Section Header
+ name := EXAMPLE;

- default:= NULL;
If you use the prototype without initializing it, its value will be NULL.

3.6.2 Shared slots

If the slot is preceded by the - character, its value is shared between all the clones of the
prototype (global slot).

Overview

Section Header
+ name := FOO;

Section Public
- slot_foo:INTEGER := 5;

Section Header
+ name := EXAMPLE;

Section Public
- slotl:INTEGER := 3;
- slot2:F00O := FOO;

P| -slotl @ -slotl |P
-slot2 -slot2
EXAVPLE = EXAMPLE. cl one

[P [slot _foo

The difference between slotl and slot2 is that INTEGER is Expanded. We will see this in
section 3.6.4 page 71.

Note that the 2 objects shared the same pointer on the FOO object. So if you change the
pointer, it changes for all the clones.

Non expanded objects have their default value set to NULL.

Section Header
+ name := FOO;

Section Public
- slot_foo:INTEGER := 5;

Section Header

66

+ name := EXAMPLE;

Section Public
- slotl:INTEGER;
- slot2:F00;

-slotl

CHAPTER 3. LANGUAGE REFERENCE

[

-slot2

EXAVPLE

-slotl |P
-slot2

EXAMPLE. cl one

[e]

Assignment

Section Header
+ name := FOO;
Section Public
- slot_foo:INTEGER := 5;

Section Header
+ name := EXAMPLE;

Section Public
- slotl:INTEGER;
- slot2:F00;
- inc_slotl <- (slotl := slotl + 1;);
- set_slot2 f:FoO <- (slot2 := f;);

Section Header
+ name := TEST,;
Section Public
- main :=
(+ obj_examplel,obj_example2:EXAMPLE;
+ obj_fool,obj_f002:FOO0;
obj_examplel := EXAMPLE.clone;
obj_example2 := EXAMPLE.clone;

P[-slot1 {o] -slotl | P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
191

obj_examplel.inc_slotl;

3.6. SLOTS

P[-slot1 {1] -slotl | p
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
18!
obj_example2.inc_slotl;
P| -slotl @ -slotl |P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
191
obj_fool := FOO.clone;
obj_examplel.set_slot2 obj_fool;
P| -slotl @ -slotl |P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2
p[siot oo
obj _fool
obj_foo2 := FOO.clone;

obj_example2.set_slot2 obj_foo2;

P| -slotl @ -slotl |P
-slot2 -slot2
obj _exanpl el =1 obj _exanpl e2

P| -slot_foo E -slot_foo [P

obj _fool obj _f 002

A You can assign an object only with an object of the same type of its descendants.

Section Header
+ name := FATHER;

Section Header
+ name := SON;

Section Inherit

67

68 CHAPTER 3. LANGUAGE REFERENCE

- parent:FATHER := FATHER;

Section Header
+ name := OBJECT_OTHER;

Section Header
+ name := TEST,;

Section Private
- slot:FATHER;
Section Public

- main :=
(+ s:S0N;
+ 0:0BJECT_OTHER;
0 := OBJECT_OTHER.clone;
slot := o; // Error: not the same type
s := SON.clone;
slot := s; // Ok: descendant of FATHER

)3
A For Expanded types, you must match exactly the same type (see 3.6.4 page 71).

3.6.3 Non shared slots

If the slot is preceded by the 4 character, its value is not shared between all the clones of the
prototype.

Overview

Section Header
+ name := FOO;

Section Public
- slot_foo:INTEGER := 5;

Section Header
+ name := EXAMPLE;

Section Public
+ slotl:INTEGER := 3;
+ slot2:FOO := FOO;

3.6. SLOTS

P| +slotl [3
+sl ot 2 [
EXAMPLE

Y

3] +slotl | P
e +slot2

EXAMPLE. cl one

P|-slot_fool

5]

+sl ot _f 002

3

FOO

69

The difference between slotl and slot2 is that INTEGER is Expanded. We will see this in

section 3.6.4 page 71.

You can think that the 2 objects shared the same object FOO. It’s false. They have
each other their own pointer on the same object, which is very different. The pointers refers to

the same object FOO because of its initialization. Examples come to illustrate this.

Non expanded objects have their default value set to NULL.

Section Header
+ name := FOO;

Section Public

- slot_fool:INTEGER := 5;
+ slot_foo2:INTEGER := 3;
Section Header
+ name := EXAMPLE;
Section Public
+ slotl:INTEGER;
+ slot2:F00;
P| +slotl [0
+sl ot 2 [)
EXAMPLE
Assignment
Section Header
+ name := FOO;
Section Public
- slot_fool:INTEGER := 5;
+ slot_foo2:INTEGER := 3;

Section Header
+ name := EXAMPLE;

o] +slotl | p

[] +sl ot 2

EXAVPLE. cl one

70 CHAPTER 3. LANGUAGE REFERENCE

Section Public

+ slotl:INTEGER;

+ slot2:F00;
inc_slotl <- (slotl := slotl + 1;);
set_slot2 f:FOO <- (slot2 := f;);

Section Header
+ name := TEST;

Section Public
- main :=
(+ obj_examplel,obj_example2:EXAMPLE;
+ obj_fool,obj_f002:FOO0;
obj_examplel := EXAMPLE.clone;
obj_example2 := EXAMPLE.clone;

Pl +slotl o o] +slotl | P
+sl ot 2 @ @ +sl ot 2
obj _exanpl el obj _exanpl e2

obj_examplel.inc_slotl;

Pl +slotl [1 o] +slotl | P
+sl ot 2 @ @ +sl ot 2
obj _exanpl el obj _exanpl e2

obj_example2.inc_slotl;

p[+slot1 [1 1] +slotl | p
+sl ot 2 [] [] +sl ot 2
obj _exanpl el obj _exanpl e2
obj_fool := FOO.clone;

obj_examplel.set_slot2 obj_fool;

p[+slot1 [2 1] +slotl | P
+sl ot 2 [] [] +sl ot 2
obj _exanpl el obj _exanpl e2

v
P|-slot_fool E]

+sl ot _foo2 |3

obj _fool

obj_foo2 := FOO.clone;
obj_example2.set_slot2 obj_foo2;

3.6. SLOTS 71

P[+slotl [1 1] +slotl | P
+sl ot 2 ® ® +sl ot 2
obj _exanpl el obj _exanpl e2
4 A
P|-slot_fool E -slot_fool|P
+sl ot _foo2 |3 3| +slot_foo2
obj _fool obj _f o002

3.6.4 Expanded slots

If the slots use the keyword Expanded, its value is cloned and embedded (in memory) in the
prototype. The keyword can be used either with 4 or -.

Overview
Let’s first see with Sharable slots.

Section Header
+ name := FOO;

Section Public
- slot_fool:INTEGER :
+ slot_foo2:INTEGER :

nn
o

Section Header
+ name := EXAMPLE;

Section Public
- slotl: Expanded INTEGER := 3;
- slot2: Expanded FOO;

P|-slotl Exp @ -slotl Exp |P
-slot2 Exp -slot2 Exp
EXAMPLE EXAMPLE. cl one

P|-slot_fool {E

+slot_foo2 |4

FQOO. cl one

If the object is already Expanded, the use of the keyword Expanded for the slot don’t
change anything. It’s why for slot1 there is no difference with the non Expanded and Sharable
slot (3.6.2) (INTEGER is already Expanded). Note that you don’t have to initialise a slot with an
Expanded object, it is already cloned and have their default value. This is a major difference
with non Expanded slots.

It’s the same thing to define an Expanded object and assign it with a slot as defining a non
Expanded object and assign it with an Expanded slot.

72

Section Header
+ name := Expanded FOO;

Section Public

CHAPTER 3. LANGUAGE REFERENCE

- slot_fool:INTEGER := 5;
+ slot_foo2:INTEGER := 4;
Section Header
+ name := EXAMPLE;
Section Public
- slotl:INTEGER := 3;
- slot2:F00;
P[-slot1l Exp {3] -slotl Exp | P
-slot2 Exp -slot2 Exp
EXAMPLE EXAMPLE. cl one
p[-slot_fool {5]
+sl ot _foo2 |4
FQOO. cl one
Let’s now see with Non Sharable slots.
Section Header
+ name := FOO;
Section Public
- slot_fool:INTEGER := 5;
+ slot_foo2:INTEGER := 4;
Section Header
+ name := EXAMPLE;
Section Public
+ slotl:INTEGER := 3;
+ slot2:Expanded F0O;
P| +slotl Exp 3 3 +slotl Exp |P
rslot2 Bxp P|-slot_fool @ -slot_fool|P tstot2 Bxp
+sl ot _foo2 |4 4| +sl ot _foo2
EXAMPLE EXAMPLE. cl one

The object FOO is directly embedded in the EXAMPLE object.

3.6. SLOTS 73

Assignment

A You can assign Expanded objects only with objects of exactly the same type (not descen-
dants, which defers from non Expanded objects), for it, use Strict type. See also 3.9.1 page
81.

Section Header
+ name := FATHER;

Section Header
+ name := SON;

Section Inherit
- parent:FATHER := FATHER;

Section Header
+ name := TEST;

Section Private
+ slot:Expanded FATHER; // slot value is not Null by default (clone of FATHER
Section Public
- main :=
(+ f:FATHER;
+ f_exp:Expanded FATHER;

+ sS:SON;

+ s_exp:Expanded SON;

slot := f_exp; // Ok, the 2 types are exactly the same

f := FATHER.clone; // f value is NULL by default

slot := f; // £ is copied into slot

slot := s_exp; // Error: not of the same type (even it inherits from FATHE
s := SON.clone;

slot := s; // Error: s is not of the same type

slot := FATHER.clone; // FATHER.clone is copied into slot

)

To explain all this restrictions, remember that an Expanded object is embedded in another. So
you can replace it only by an object of the same size (in terms of memory).

Let see an example of assignment. It’s very important to notice that if you have a slot with
an Expanded parameter, this parameter is passed by copy.

Section Header
+ name := FOO;

Section Public

- slot_fool:INTEGER := 5;
- inc_fool <- (slot_fool := slot_fool + 1;);
+ slot_foo2:INTEGER := 4;

- inc_foo2 <- (slot_foo2 := slot_foo2 + 1;);

74 CHAPTER 3. LANGUAGE REFERENCE

Section Header
+ name := EXAMPLE;

Section Public
+ slotl:Expanded FOO;
slot2: Expanded FOO;

- set_slotl f:Expanded roO <- (slotl := f;); // argument must be Expanded
- set_slot2 f:Expanded roO <- (slot2 := f;);
Section Header
+ name := TEST;
Section Public
- main :=
(+ obj_examplel,obj_example2:EXAMPLE;
+ obj_fool,obj_foo2: Expanded FOO;
obj_examplel := EXAMPLE.clone;
obj_example2 := EXAMPLE.clone;
P|-slot_fool -slot_fool|P
+sl ot _foo2 |4 4] +sl ot _foo2
obj _fool obj _foo2
P[+stot1 Bxp P|-slot_fool 5 -slot_fool|P +slotl Bxp | P
+sl ot _f 002 [4 4] +sl ot _foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
4| +slot_foo2

obj_fool.inc_fool;
obj_fool.inc_foo2;

obj_examplel.set_slotl obj_fool; // obj_fool cloned when passed through SET_SLOT1
P|-slot_fool -slot_fool|P
+slot_foo2 |5 4] +slot_foo2
obj _fool obj _foo2
P P
vstotl Bxp P|-slot_fool 6 -slot_fool|P +stotl Bxp
+slot_foo2 [5 4] +slot_foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]P
4| +sl ot _foo2

3.6. SLOTS

obj_fool.inc_fool;
obj_fool.inc_foo2;
obj_example2.set_slotl obj_fool;

P|-slot_fool -slot_fool|P
+sl ot _foo2 |6 4] +sl ot _foo2
obj _fool obj _foo2
P +slot1 Ex lotl Exp | P
sto P P|-slot_fool 7 -slot_fool sto P
+sl ot _f 002 [5 5] +sl ot _foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2
i -slot_fool
4| +slot_foo2
obj_foo2.inc_fool;
obj_foo2.inc_foo2;
obj_example2.set_slot2 obj_foo2;
P|-slot_fool -slot_fool|P
+slot_foo2 [6 5[+slot_foo2
obj _fool obj _foo2
P P
vstotl Bxp P|-slot_fool 8 -slot_fool +stotl Bxp
+slot_foo2 [5 5| +slot_foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2
i -slot_fool
5| +slot_foo2

obj_fool.inc_fool;
obj_fool.inc_foo2;
obj_examplel.set_slot2 obj_fool;

P|-slot_fool -slot_fool|P
+slot_foo2 [7 5[+slot_foo2
obj _fool obj _foo2
P +slot1 Ex +slot1 Exp | P
stot P P|-slot_fool 9 -slot_fool stot P
+slot_foo2 [5 S| +slot_foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2
I _slot_fool

obj_examplel.slot2.inc_foo2;
obj_example2.slotl.inc_foo2;

7

+sl ot _f 002

75

76 CHAPTER 3. LANGUAGE REFERENCE

P|-slot_fool -slot_fool|P
+slot_foo2 |7 5] +sl ot _foo2
obj _fool obj _foo2
Pl +slot1 Ex +slot1 Exp | P
P P|-slot_fool =] -slot_fool|P P
+sl ot _f 002 [5 6] +sl ot _foo2
-slot2 Exp -slot2 Exp
obj _exanpl el obj _exanpl e2

I _siot_fool]p
8| +slot_foo2

3.7 Slot descriptors

An object may hold any number of slots which must be in the section codes (see 3.3.7 page 55).
Slots can contain data (values and references) or methods (code).

3.7.1 Keyword slots

Code slot may have arguments, which are separated by lowercase keywords. Numbers and the
underscore are authorized for name of the slot and keywords (but the sequence "__’ is prohibited).
Here are the various way to identify a slot in Lisaac:

1. Argumentless slot definition without return value:

- init <= /x ... */

2. Argumentless slot definition with return value:

- get_color:INTEGER <- /* ... */

This slot returns an integer value.

3. Definition of a slot with argument and no return value:

- make count:INTEGER <- /* ... %/

This slot takes an integer argument.

4. Definition of slot with argument and return value :

- qgsort tab:ARRAY[CHARACTER] :BOOLEAN <- /* ... */

5. Definition of slot with argument list and keywords without return value:

3.7. SLOT DESCRIPTORS 7

- gsort tab:ARRAY[CHARACTER] from low:INTEGER to high:INTEGER <-
VA S V)

This slot has three arguments and no return value. Note how the keywords help understand
what the slot does.

6. Definition of slot with argument, keywords and return value :

- sort t:ARRAY[CHARACTER] from low:INTEGER to high:INTEGER :BOOLEAN <-
VA S V)

A It’s important to notice that after keywords you have only one argument. But an
argument can be a vector argument, or LIST, as defined in 3.10 page 3.10.

- put_pixel (x,y:INTEGER) <- /* ... %/
- draw_line (x,y:INTEGER) to (x1,yl:INTEGER) color (r,g,b:INTEGER) <-
/* ... x/

A Arguments are read only ! you can’t modify an argument in a method, even if it is a
list.

A message (or method) is identified by taking into account the message name as well as its
keywords (if any). The names and positions of the keywords thus are very important.

- slot argl:INTEGER from arg2:INTEGER <- /* ... */
- slot argl:INTEGER from arg2:INTEGER to arg3:INTEGER <- /* ... */

The 2 slots defined in the previous example are considered different.

A Overloading is not allowed. Therefore, two messages can’t differ by the type of their
arguments or the type of return. You can’t also have 2 slots which differ only with the existence
of a return value.

- slot argl:INTEGER from arg2:INTEGER <- /* ... */
- slot argl:BOOLEAN from arg2:INTEGER <- /* ... %/ // Forbidden !
- slot argl:INTEGER from arg2:INTEGER :INTEGER <- /x ... */ // Forbidden !

3.7.2 Binary messages

In Lisaac, everything is object and even the simplest operation is done using messages. For
example, the binary operation ’ 2 + 3 7 is a call of the message ’ 4+ ’ on the object * 2 ’ using ’
3’ as argument.

You can define binary operators in Lisaac as defined in the following. It is also possible to
chose the associativity and the priority of operators, like for example in the ELAN language
[PBy00].

To declare the associativity of an operator, the keywords left or right may be used.

Priorities are specified by a positive integer value. Priorities start at 1 (lowest priority) and
have no upper limit!

'"Except the maximum allowed for 32 bits integers, of course.

78 CHAPTER 3. LANGUAGE REFERENCE

The default associativity is left, and the default priority is 1.

Here is for example the code for the ** (power) binary operator, that is left-associative and
has prioriy 150.

- 7% right 150 exp:INTEGER :INTEGER <-
(+ result:INTEGER;

(exp == 0).if {
result := 1;
} else {
((exp & 1) == 0).if {
result := ((Self *x Self) **x (exp / 2));
} else {
result := (Self x (Self *x (exp-1)));
}s

+s
result
)
You can use it with:

a := 2 *xkx 3;

Here is the possible code for an | binary operator that would be left-associative and have
priority 40 in INTEGER:

- | left 40 other:INTEGER :INTEGER <- ! ((!Self) & (lother));
You can use it with:

a :=b | c;

- '+’ left 80 other:SELF :SELF <- (Self - -other);
- "% left 90 other:SELF :SELF <- /* ... %/

In the expression
a =2+ 3 x 4;

the first operation done is 3 * 4 then the addition.

3 4

Note that you will find a list of the binary operator more used in the glossary (see 5.1 page 123).

A Operators * = ’ and ’ |= " are reserved for reference comparisons. They have a right
associativity and and a priority of 50.

3.7. SLOT DESCRIPTORS 79

3.7.3 Unary messages

The only unary operators allowed are prefixed ones (put at the left of the the receiver).
A canonical example is the unary minus, whose code in INTEGER is:

- %2?:INTEGER <- zero - Self;
You can use it with:
a := - 3;

Another common unary prefix operator in Lisaac is the question-mark ’?’. It is used to allow
a rudimentary contract-programming mechanism, very much like the assert mechanism of C
or Java, but in a much less powerful way than the require/ensure Eiffel mechanism. See also
3.13.2 page 98. Here is the code for the ? unary prefix operator define in BLOCK object:

— 7?7 <_
(
((_debug_level > 0) && {! value }).if {
check_crash;
}s
);

Note that _debug level is a predefined flag set by the compiler according to the parameters
chosen by the developper at compile time. You can use it with:

? {a = 3}; // You will see later that between {} you define a BLOCK object.

Here is an illustration of the use of ? to implement a kind of routine pre- and post-conditions:

- gcd other:INTEGER :INTEGER <-
// Great Common Divisor of ‘self’ and ‘other’
(+ result:INTEGER;
? {Self >=0}; // a precondition
? {other>=0}; // a second one

(other == 0).if {
result := Self;
} else {

result := other.gcd (Self % other);
s
? {result == other.gcd Self}; // a postcondition
result

)

- factorial :INTEGER <-
(+ result:INTEGER;
7 {Self>=0};

// factorial
(Self == 0).if {
result := 1;

} else {

80 CHAPTER 3. LANGUAGE REFERENCE

result := (Self * (Self - 1) .factorial);

+s
result

)

Note that once the object code has been tested and debugged, the developper can switch off
these assertions in the final delivery version by using a simple compile-time option.

3.7.4 Variable-argument list

You can define an argument representing a variable sized vector of parameters of a given type.
In this case, we use the particular type FIXED_ARRAY[E| 3.4.4.

- add list:FIXED_ARRAY[INTEGER] <-
// Append several integer in my collection.

(
(list.lower) .to (list.upper) do { j:INTEGER;
add_last (list.item j);
);

Calls are then directly done by simple lists:

my_object.add (0,1);
my_object.add (0,1,2,3);
my_object.add (0);

3.8 Message send, late binding

The syntax of message calls in Lisaac strongly looks like message calls in Self.

Message kind # of Arguments Precedence Associativity
keyword >=(highest left-to-right
unary 0 medium right

binary 1 lowest left or right™*

* Default associativity for binary messages is left, but it can be changed, because associativity
is defined at the time of the slot’s declaration (see section 3.7.2 page 77).

A The priority defined by a integer for the binary expressions apply only between the
binary operators.

Arguments may be separated by commas or may use keywords as well (the method name is
splitted into words to separate arguments), as seen in section 3.7.1 page 76.

3.9 Assignment

The declaration of a slot defines its evaluation mode: immediate or delayed. The slots with
immediate evaluation will be evaluated in the order of their declarations (order of the lookup,
see 3.3.2). They are evalueted at the load time of the object in memory. The starting point of
a program will thus naturally be defined by a slot of this type.

e Definition with ’:=’ : immediate evaluation The slot is evaluated immediately, that is
automatically, when the prototype is loaded :

3.9. ASSIGNMENT 81

- max_character:INTEGER := (2 *x 8) - 1;

The main slot containing the program is declared this way and is thus evaluated as the

initial root prototype is loaded :

- main :=
(10.put_string ”Hello world !”;);

e Definition with ’>?7=": immediate evaluation The slot is evaluated immediately, that is
automatically, when the prototype is loaded :

- to_value_if possible: VALUE 7= Self;

If the result is bad type then the result is NULL. See more in the section 3.9.3 page 82.
e Definition with ’<-’ : delayed evaluation Slots declared this way are evaluated only when

explicitly requested by a message send:

- display <-
(10.put_string "Hello world I”;);

A normal slot method is declared this way. In order to trigger the evaluation of display,
it has to be called, like in the following program:

- main :=
(display;); // explicit call

3.9.1 Typing rules

Assignment follows strict rules in order to respect typing. Examine all the possible cases of the
assignment A := B.

A B type Self Expanded type Strict type
type B.sub A B.sub A B.sub A B.sub A
Self fail A=B A=B A=B
Expanded type fail A=B A=B A=B
Strict type fail A=B A=B A=8B
Notes: 'B.sub A’ means that B has the same type as A or of its descendants (B is sub type of
A). ’A = B’ means that A and B have the same type reference.

3.9.2 Implicit-receiver messages

Keyword messages are frequently written without an explicit receiver. Such messages use the
current living object (named Self) as the implied receiver. When you call a slot inside an object,
it implicitly call the slot of the self object. The keyword Self can be used to explicitly call the
self object.

82 CHAPTER 3. LANGUAGE REFERENCE

Section Header
+ name := EXAMPLE;

Section Public
+ slot_data:INTEGER := 3;

- main <-
(
Self.slot_data.print; // produce exactly the same code as slot_data.print;
)3
A Note that the self is different between all the objects, even if they have the same type.
A Unary and binary messages do not accept the implicit receiver, they require an explicit
one.
3.9.3 A particular assignment: 7=

We see that we can assign an object slot with an object of the same type or of its descendants.

FRU T

APPLE | | ORANGE

+ f:FRUIT;
+ a:APPLE;
a := APPLE;
f := a;

But you can’t assign an object with one of its parents.

+ f:FRUIT;
+ a:APPLE;
f := FRUIT;
a :=f; // Error: static type FRUIT is invalid with static type APPLE

You can use the assignment defined with 7= to assign an object with an other object of the
same dynamic type. During compilation, the static type can be different but it don’t stop with
€ITOor.

+ f:FRUIT;

+ a:APPLE;

(test).if { f := APPLE; }
else { f := ORANGE; };
a 7= f;

During the compilation, the dynamic type of f is not known at the time of assignment but there
is no typing error because static type of f is FRUIT, of which inherits APPLE, static type of a.

The results depends on the dynamic type of f. If the dynamic type of f is exactly the same
as a, the assignment is done as a standard assignment. If the dynamic types are different, the
receiver a is assigned with NULL.

3.10. STATEMENT LISTS 83

The second use of * 7=’ concerns the affectation of Strict type slots with a non Strict type
value.

(+ foo:APPLE;
+ bar:Strict APPLE;

(test) .if {
foo := APPLE.clone;
} else {
foo := APPLE_GREEN.clone;

s

bar 7= foo; // ‘bar = foo’, if ‘foo’ is extactly APPLE.

3.9.4 Binary message send

Here is a series of examples to illustrate the above precedence rules:

Source code is interpreted as

2 + "25" to_integer + 5 (2+ ("25".to_integer)) + 5)
object.set_value 2+2 ((object.set_value 2) + 2)

2+2 .to_string (2+ (2.to_string))

3.9.5 Unary message send

Source code is interpreted as
object.set_value -2 ((object.set_value) - (2))
-2.to_string (- (2.to_string))

-+ -9 (- C+(C=-2)))

Other example:

? {array != NULL};

3.10 Statement lists

A statement list, or simply “list”, is a sequence of one or several statements, contained between
parentheses *(’ ... ’)’. Statements are both considered as instructions (doing something) and
expressions (having a value), at the same time. Consecutive statements are separated by a
semicolon ;. If you want a return value, the result must be the last expression, without ending
by ’;’. You can return multiple values, as a vector of values (values separated with a comma
’,’, respecting the order).

Without return value With one return value With N return value

(local; (local; (local,
exprl; exprl; exprl;
expr expr expr
exprs; exprs; result,
erpr; result result?

)))

84 CHAPTER 3. LANGUAGE REFERENCE

A list is immediately evaluated when reached by the execution flow. Thus, a routine which
argument is the (single-statement) list *(3 + 2)’ receives as argument the result of the evalua-
tion, 5, not the list itself?.

- make count:INTEGER <- /* ... */
/* ... %/

make (3 + 2);

make 5;

VA V)
You can also have code and return value for arguments:

make ("Here is the call with a list !".print; 3 + 2);

V2 T

Consequently, there is absolutely no difference between a one-statement list in Lisaac and
an expression as classically defined in most programming languages.

3.10.1 Return values of lists

The type and return value of a list are determined by the last expression (statement) of the list,
after the last semicolon ’;’ and right before the closing parenthesis ’)’.
For example, the following list returns an INTEGER value:

(
a := foo;
5.factorial // INTEGER value returned

)

Note that there is no semicolon after the call to factorial.
This list also quite intuitively returns an INTEGER:

(2 * (5 + 3)) // two nested lists, both returning INTEGER
This list can returns more complex objects, such as BOOLEAN:
(al (b&c)) // two nested lists, both returning BOOLEAN

or whichever object:

(

"Here we create a clone of EXAMPLE object".print;
EXAMPLE. clone

)

As said before, you can return multiple values by separating results with commas ’, .
(3, 5) // two INTEGER value returns

Return values don’t need to have the same type.

(
(al (b&c)),
8
) // two return values, a BOOLEAN and an INTEGER

2This is the contrary for statement blocks, see section 3.11 page 89.

3.10. STATEMENT LISTS 85

Lists could have code and multiple return values:

(
"Multiple return values".print;
EXAMPLE. clone,
(a | (b &c),
6
)

A You can put code between results, but you can’t mix result and not results as explained
in the following example:

(

"Hello".print;

3,

"0k".print; // Error: there is a result before, you must end with a result
);
(

"Hello".print;

3,

"0k".print;

0 // Ok
);

A list may also have no return value at all:

(
a := foo;
5.factorial; // void return

)

In this example, there was a semicolon after the call to factorial. Intuitively, since there is
nothing between the last semicolon et the closing parenthesis (or an “empty statement” only),
nothing is returned from the list after it has been evaluated.

3.10.2 Use of lists
Expressions

It’s the classical use of a LIST which one can find in other languages.

(2+4) 7 // list with a single return value

Methods

.From the beginning of this manual, we define methods using lists.

- slot <-

(

"Hello !".print; // List with no return value

)

86 CHAPTER 3. LANGUAGE REFERENCE

Functions with one result

We see that the result must be the last expression before the end of the list, without using the
semicolon. The definition of the return type is done after :.

- zero:INTEGER <-
(

"Call zero function !".print;
0
);
Functions with multiple results

The results are separated by a comma, at the end of the list. The definition of the return types
is done after :, separated by commas.

- coord: (INTEGER,INTEGER) <-

(
"Call coord function !".print;
X,
y

);

You can also return different types.

- slot: (INTEGER,BOOLEAN) <-

(
"Call slot function !".print;
count,
(count > 0)
);
Arguments

Slots accept only one argument as defined in 3.7. But an argument can be a vector.

- put_pixel (coord x,coord_y:INTEGER) <-

(
X := coord_x;
y := coord.y;
);
- put_pixel (coord _x,coord_y:INTEGER) color (r,g,b:INTEGER) <-
(
X := coord_x;
y := coord.y;
red :=r;
green := g;
blue := b;

3.10. STATEMENT LISTS 87

Arguments in a list don’t have to be of the same type, as we can imagine after having seen
the previous examples. It’s simply more readable to put keywords to separate arguments of
different types.

- slot (value:INTEGER,condition:BOOLEAN,text:STRING) <- /* ... */

Call of slots

If a slot is defined with a list-argument, you must use a list to call this slot.

- put_pixel (coord_x,coord_y:INTEGER) <-
(

coord_x;
coord.y;

X
y -

)

You call this slot with:
put_pixel (x,y);
You can also call it using a function returning a list:

- coord: (INTEGER,INTEGER) <-

(

X,

y
)

The call of the slot can be:

put_pixel coord;

A You can’t transform a call with keywords in a call with list.
- slot value:INTEGER from low:INTEGER to high <- /x ... %/
Call slot (3,4 ,5); is forbidden, it represents a slot defined with

- slot (value,low,high:INTEGER) <- /* ... */

Assignment

You can assign a list only with a list.

(a, b)
(x,vy)

(3, 7);
coord;

You can also redefine a function (a list assigned with delayed evaluation ’j-")

- msg_error msg:STRING <-
(
?Error : 7.print;
msg.print;

)

88 CHAPTER 3. LANGUAGE REFERENCE

- debug_mode <-

(
msg_error msg <- // you don’t have to precise the type of the argument
(
?Error : ”.print;

msg.print;

display_stack;

)3
)3

A The redefinition of a function must respect the same profile for arguments.

Special case: receiver of message is a list
You can define a list as a receiver for a message.

- (b:BOOLEAN) slot a:INTEGER to c:INTEGER <- /* ... %/
The call is done on the double result list:

(Self, TRUE) .slot 1 to 2;

The receiver of the message is the first element of the vector.

3.10.3 Local variables in statement lists

A list has its own environment and scoping. It is possible to declare variables that are local to
the list and thus accessible from any statement inside the list but not from outside.

(+ j,k:INTEGER;
+ array:ARRAY [STRING] ;
VA T Y

Locals in lists have to be declared at the beginning or the list, before the first statement.
Therefore, the following declaration is incorrect in Lisaac:

(+ j,k:INTEGER; // declaration, OK
some_method_call; // statement, OK
+ array:ARRAY [STRING]; // INVALID declaration !!
/* ... %/

)

Local variables declared with -’ preserve their values with each call (variable persistent), as
for the keyword ’static’ for locals in C.

(+ j,k:INTEGER; // declaration, OK
- counter_call:INTEGER;
/* ... %/
counter_call := counter_call + 1;

3.11. STATEMENT BLOCKS 89

3.11 Statement blocks

Statement blocks, or simply “blocks”, have a number of similarities with lists (see section 3.10
page 83).

A block is a sequence of one or several semicolon-separated statements (instructions), con-
tained between braces {’ ... ’}’. A block is an instance of prototype BLOCK.

Blocks are Lisaac closures like a list. Their evaluation is carried out in their definition
environment. Contrary to lists, blocks are evaluated only when explicitly sent a value message.
When a block receives an acceptable value message, its statements are executed in the context
of the current activation of the method in which the block is declared. This allows the statements
in the block to access variables that are local to the block’s enclosing method and any enclosing
blocks in that method. This set of variables comprises the lexical scope of the block. It also
means that within the block, Self refers to the receiver of the message that activated the method,
not to the block object itself.

A block can take an arbitrary number of arguments and can have its own local variables, as
well as having access to the local variables of its enclosing method.

On of the common use of blocks in Lisaac is to implement library-defined control structures
(see section 3.11.2 page 92).

Here, an example of a current use of a block.

(1ist = NuLL).if {
7 List is empty !”.print;

s

The block (’if’ first’s argument) is evaluated only if conditional is true.

As for lists, you can have no return value or one or multiple return.

Without return value With one return value With N return value
{ local, { local, { local,

exprl; exprl; exprl;

expr; expr?; expr

exprs; exprs; result,

erpr; result result?

} } }

A block is equivalent with a list when you call the value message on it.

(local;
exprl;
expr;
exprs;
erpry;

)

is equivalent with

{ local;
exprl;
expr2;
expry;
exprs;

}.value

90 CHAPTER 3. LANGUAGE REFERENCE

3.11.1 Return values of blocks

The value returned by a block is determined exactly like that of a list (see section 3.10.1 page
84).

The following examples thus are quite straight forward.

The following block returns an INTEGER value:

{
a := foo;
5.factorial // integer value returned

}

There is no semicolon after the call to factorial.
The right-hand-side of the || operator is a single-statement block that returns a boolean:

test := (j < upper) || {result != NULL};

A block may also have no return value at all:

{
a := foo;
5.factorial; // void return

}

There was a semicolon after the call to factorial. Since there is nothing between the last
semicolon et the closing curly braket (or an “empty statement” only), nothing is returned from
the block after it has been evaluated.

A block is not context sensitive, if it does not use local variables in AA+AA or of method
parameters where it is declared.

1. A non context sensitive block can set any slot of type BLOCK or be returned as result of
a method.

2. A context sensitive block can set a local in '+’ of type BLOCK or a parameter of type
BLOCK when sending a message.

So it can not set a slot of an other BLOCK object, neither a BLOCK local in ’-” and neiher be
send as result of a method.
Example of non context sensitive block.

+

data_1:INTEGER;
- data_2:INTEGER;

method_1 param_1:INTEGER <-
(+ local_1:INTEGER;

- local 2:INTEGER;

+ block_2:BLOCK;

block := { param 2:INTEGER; // Non context sensitive block !
+ local _3:INTEGER;

+ local 4:INTEGER;

(data-1 + data_2 + local 2 + local 3 + local 4 + param2).print;

3.11. STATEMENT BLOCKS 91

s

block_2 := { param 2:INTEGER; // context sensitive block !
+ local _3:INTEGER;
+ local 4:INTEGER;

(

data_l + data_2 + local 2 + local3 + local 4 + param2+
param_1 + local_3
) .print;
b
)

A block not sensitive context can be evaluated anywhere, and at any times!
A block sensitive context must be evaluated with the context of the method always in stack
(this guaranteed by rule 2).

3.11.2 TUse of blocks

When using a block as an argument, it’s not the result of the block that is passed (as for lists)
but the block itself. This property has an incidence on the way you declare the slots.

- slot b:BLOCK <= /* ... */
The call must be with a slot object:

slot {/* ... x/};

A You must ensure that what is defined in the block is independent from the context.
Let’s see an example.

- my_block:BLOCK;

- slot <-

(+ a:INTEGER;

my_block := { a }; // Forbidden !
)

When the evaluation of the return block (with the message value), the local variable ’a’ don’t
exist ! the result can’t be evaluated.
An example of correct use:

- slot <-

(+ a:BLOCK;
a := { "World!".print; };
"Hello ".print;
a.value;

)

Blocks are used in library to define conditionnals, loops and iterations. You will find more in
the section Library (see 4).

92 CHAPTER 3. LANGUAGE REFERENCE

Expressions

(a != NULL) && { b = 3}

In the definition of the binary slot && you find the evaluation of the block. In the FALSE
prototype:

- ’&&’ left 20 other:BLOCK :BOOLEAN <- FALSE;
In the TRUE prototype:

- '&&’ left 20 other:BLOCK :BOOLEAN <- other.value;

Conditionals

(a>b) .if {"Yes!".print;} else {"No!".print;};

In the definition of the slot if ... else you find the evaluation of the block. In the FALSE
prototype:

- if true_block:BLOCK else false_block:BLOCK <-
(

false_block.value;
);

In the TRUE prototype:

- if true_block:BLOCK else false_block:BLOCK <-

(

true_block.value;

)

Loops
Do While

{j :=j+1; j.print;}.do_while {j<10};
The slot do_while is defined directly in the BLOCK object:

- do_while test:BLOCK <-

(
value; // call of value on BLOCK Self
test.value.if {
do_while test; // Defined recursively
}s

)

3.11. STATEMENT BLOCKS 93

Iterator

1.to 10 do {"Hello!".print;};
The slot to ... do is defined in the NUMERIC object:

- to limit_up:SELF do blc:BLOCK <-
(
(Self<=1imit_up) .if {
blc.value Self;
(Self + 1) .to limit_up do blc;
}s
)3

3.11.3 Argument and local variables in statement blocks

Locals in blocks are declared like locals in lists (see section 3.10.3 page 88):

my_block := { + j,k:INTEGER; // Locals list.
+ array:ARRAY [STRING] ;
/* ... x/
}s
VA SR ¥

my_block.value;

You can also call a slot with an argument. It’s defined as local variables, but without sign

before.
my_block := { arg:INTEGER; // Argument
+ 1,j:INTEGER; // Locals list.
VA S ¥
¥
/x .. ox/

my_block.value 3;

An argument can also be a vector of arguments.

my_block := { (argl:INTEGER, arg2:STRING); // Argument list.
+ j,k:INTEGER;
VA T ¥
}s
VAT

my block.value (3,70k !”);

The same restrictions as for locals in lists also apply: local have to be declared before any
statement and after possible the arguments.

94 CHAPTER 3. LANGUAGE REFERENCE

3.12 Export / Import automatic conversion object

3.12.1 Auto-Export object

Sometimes you want to transform an object in another object, especially for the numbers. This
can be done with the ” Auto-export” facility. In the Header section, in the slot name, you can
define the prototypes in which the object can be ”auto-casted” with the ->’ symbol.

Section Header
+ name := PROTO1 -> PROTO2,PROTO3;

Section Public
- to_proto2:proto2 <- (...)
- to_proto3:proto3 <- (...)

A In the public section, you must define functions called to_name_of-type (here to_proto2
and to_proto3) which are automatically called when there is an autocast. These function must
return the corresponding type.

Section Header
+ name := TEST,;

Section Public
- main :=
(+ a:PROTO1;
+ b:PROTO2;

/* ... %/
b := a; // similar to: b := a.to_proto2;
VA T V)

)

3.12.2 Auto-Import object

In the Header section, in the slot name, you can define the prototypes in which the object can
be ”auto-imported” with the '<-” symbol.

Section Header
+ name := PROTO1l <- PROTO2,PROTO3;

Section Public
- from_proto2 elt:PROTO2 :PROTO1 <- (/* ... %/);
- from_proto3 elt:PROTO3 :SELF <= (/* ... x/);

A In the public section, you must define functions called from_name_of-type (here from_proto2
and from_proto3) which are automatically called when there is an auto-import. These function
must return the corresponding SELF type.

Section Header
+ name := TEST,;

Section Public

3.12. EXPORT / IMPORT AUTOMATIC CONVERSION OBJECT 95

- main :=
(+ a:PROTO1;
+ b:PROTO2;

/x .. %/
a := b; // similar to: a := PROTOl.from_proto2 b;
/* ... %/

)

A Auto-export (or Auto-Import) is not transitive: if A can be auto-casted into B, and B
into C, A can’t be auto-casted in C. You must explicitly precise the auto-cast of A into C if you
need this.

Auto-Export or Auto-Import is not inherited.

3.12.3 Complex import / Export with vector object

You can also define vectors for an importation or exportation.

Section Header
+ name := PROTO <- (INTEGER, STRING_CONSTANT);

Section Private
+ count:INTEGER;
+ name:STRING_CONSTANT;
Section Public
- from_integer_string_constant (n:INTEGER, s:STRING_CONSTANT) :PROTO <-
(
create (n,s)

)

- create (n:INTEGER, s:STRING_CONSTANT) :PROTO <-
(+ result:PROTO;

result := clone;
result.make (n,s);
result
);
- make (n:INTEGER, s:STRING) <-
(
count := n;
name := s;
);

This can be used to simplify objects initilization :

Section Header

96 CHAPTER 3. LANGUAGE REFERENCE

+ name := TEST,;

Section Public
- main :=
(+ a:PROTO;

VA T V)
a := (1, ’’Benoit’’); // similar to: a := PROTO.create (1, ’’Benoit’’);
/* ... %/

)

3.13 Tools for programming by contract
Compiler furnishes 3 native functions :

- debug_level : INTEGER // Flag indicating the level of debug mode
- top_runtime_stack:POINTER // Give the top stack pointer.
- print_runtime_stack_on ptr:POINTER // Print the stack from ‘ptr’

FEzample: output with print_runtime_stack

BOTTOM
Line #20 Column #9 in HELLO (./hello.li).
- main <-
Line #39 Column #18 in HELLO (./hello.li).
tab.put 3 to 5;
Line #217 Column #22 in FAST_ARRAY (/lib/collection/fast_array.li).
? {valid_index i};

TOP
User assertion violated.

One example of use of these functions is assertions. Assertions are code conditions which
are verified during execution when the object is compiled with the debug option. There are 2
types of assertions: first is a unary message of BLOCK.

P— ?) <-
// User assertion without message.
(+ ptr:POINTER;

ptr := top_runtime_stack;
((debug_level >=10) && {! value}).if {
crash_on ptr with_message "User assertion violated.";
b
)3

The block condition must return one BOOLEAN value. In OBJECT prototype the crash_on
with_message code is defined:

3.13. TOOLS FOR PROGRAMMING BY CONTRACT 97

- crash_on ptr:POINTER with_message msg:ABSTRACT_STRING <-

(

print_runtime_stack_on ptr;

msg.print;

’\ n’.print;

die_with_code exit_failure_code;
);
- exit_failure_code:INTEGER := 1;

- die_with_code code:INTEGER <- SYSTEM.exit code;

The exit slot of SYSTEM depends on the architecture on which you run the program.
For example, for UNIX, the slot exit is defined as following:

- exit code:INTEGER <- ‘exit(@code) ‘; // External, see 3.15.2

The assertions can be put wherever you want in the code.

/¥ ... code ... */

7
"We verified your code".print;
j >0

b

/¥ ... code ... */

The second type of assertion is a binary message of NUMERIC: This type of assertion depends
on the level of debug set while compiling.

- ’?’ b:BLOCK <-
(
((debug_level > Self) && {! b.value }).if {
check_crash;
}s
);

This kind of assertion can be put anywhere in the code:

J* ... code ... */

574
"Debug test level 5".print;
j >0

}s

37/
"Debug test level 3".print;
j <10

}s

174
"Debug test level 1".print;
i>0

}s
J* ... code ... */

98 CHAPTER 3. LANGUAGE REFERENCE

If you compile using the level 4 for debug, only the 2 last assertions will be verified. Using this
kind of assertions let you assign priorities into verifications.

The stack is written from bottom to top, it indicates the way the program follow during
execution. You can then easily find where the condition is false.

3.13.1 degrees of assertions

debug_level Usage Example

>n No define 2 7 {valid_index i}

>5 Require code -7 {valid_index i}

>5 Require code with message {valid_index i} -? “No valid index.”
> 10 User code ? {valid_index i}

> 10 User code with message {valid_index i} 7 “No valid index.”
> 15 Ensure code +7? {valid_index i}

> 15 Ensure code with message {valid_index i} +? “No valid index.”

Note: The definitions of those slots are located in the BLOCK prototype.

3.13.2 Requires and Ensures

To secure programming, you can put requires, ensure and invariant into the code: conditions
which have to be verified each time you call a message. Before the call, the conditions are called
Require, and after the call Ensure.

[* oo00*

a.sl ot =————» Require
code of slot

Ensure

Require and Ensure are defined between [and]. Require is written between the slot header and
the code.

- slot <-
[
// Require
]
(
// Code
)
[

// Ensure

1;

3.13. TOOLS FOR PROGRAMMING BY CONTRACT 99

In Require or Ensure section you can write your code as any other method. You can define
local variables, but their visibility is limited in the Require or in the Ensure (a local variable
defined in the Require is not visible in the code or in the Ensure). Local variables defined in the
code are also only limited to the code section.

- slot <-
L
+ a:INTEGER;
a := 3;
? {count > a};
]
(+ b:INTEGER;
b := a; // Error: ’a’ is not defined in the Code section
b :=Db x 3;
)
L
? {count > a}; // Error: ’a’ is not defined in the Ensure section
? {count < b}; // Error: ’b’ is not defined in the Ensure section
13

In the Require and Ensure section, you can define as many assertions as you want.

3.13.3 Invariant

You can define at the end of code invariant conditions, which must be verified each time you
call a message on an object. The invariant is defined between [and |.

Section Header

+ name := /*x ... x/
/* ... x/
Section Public
/* ... x/
[
? {lower <= upper + 1};
1;

The invariant is verified each time you call a message with the explicit receiver, before and
after the call.

QUTSI DE a

1
1
:
JEREY ;
a. sl ot —:» I nvari ant
1= .0 0% : Require
: code of slot
: Ensure
1

I nvari ant
1

If the call is done inside the living object, the invariant is not verified.

100 CHAPTER 3. LANGUAGE REFERENCE

I NSI DE a '
1

1

1

1

* *

/A .
sl ot —:> Require

I* o0 code of slot

|
|
|

Ensure

A If inside the living object, you explicitly call the Self object, the invariant will be verified.

I NSI DE a

1
1
1
1
P
A
1

Sel f. sl ot |—> I nvari ant

(A : Require

: code of slot
: Ensure

1

I nvari ant
1

3.13.4 Result and Old

You can use the keywords Old and Result_z to add more verifications. The keyword Old can
be used in Ensures and Invariant. It is written before a function to indicate the value of this
slot before the call of the current slot.

- slot <-

(

count := count + 1;

? {count = Old count + 1};
1;

A You can only use Old with slots containing no arguments.
The keyword Result_z represents the result of the function and can only be used in Ensures.
If there is only one result, use simply the keyword Result.

- slot:INTEGER <-
(+ a:INTEGER;
a := count;
(a > 0).if {
a :=a+1;
} else {
a :=1;
¥

a

3.13. TOOLS FOR PROGRAMMING BY CONTRACT 101

? { Result >= 1 };
15

- slot2:INTEGER,INTEGER <-

(
count + 1,
count - 1
)
[
? { Result_1 >= 1 };
? { Result_2 > 0 };
1;

3.13.5 Inheritance

Objects inherit invariants from their parents, following the lookup algorithm.

FATHER FATHER
A |Invariant A A lnvariant A

equivalent to =

SON SON

Invariant A

If an invariant is defined in an object, it replaces those of its static parent.

FATHER
Allnvariant A

SON
Invariant B

An object can also inherit invariant from its parent and add its own invariant. This is done by
using dots (...). The invariant of the parent is inserted where the dots are written.

[

? {count > 0};

1;

FATHER FATHER
A I nvariant A A lnvariant A

equivalent to =

SON | SON

Invariant A
Invariant B Invariant B

102 CHAPTER 3. LANGUAGE REFERENCE

The same pattern is used with Require and Ensures. If an object has a slot with no Require
or/and Ensure, this slot inherits the Require / Ensure of the corresponding parent’s slot (if any).
The Require / Ensure defined in a slot replace those of the object’s parent. Dots are the way to
append a new Require / Ensure without overwritting the conditions inherited from the parent.

3.14 COP: Concurrent Object Prototypes

3.14.1 Description
The COP Model

Version 0.3 of this specification introduces a concurrency model (COP) that let you run multiple
execution paths in parallel, evolving in separate environments. This model is well suited for
multi-processor or multi-core machines as well as multi-node clusters, thanks to the independence
of the different execution environments. This model is implemented in a language-natural way,
so no specific library or prototype needs to be used.

Concurrency in Lisaac is achieved using the scope sign of the ‘name’ slot. The meaning
of the sign is kept: on one hand, you have ‘+’, which stands for a slot private to an object’s
instance and for COP means that the object is specific to an execution environment without
being accessible from the others when applied to the ‘name’ slot. On the other hand, you have
the ‘-’ scope which means that this slot is shared among every instance of the prototype; in the
COP model, this scope is used for an object defining its own execution environment and which
may be accessed from others.
We can see that only a ‘-’ object can define an execution environment. In fact, there are
as many environments as there are ‘-’ objects. Inside each environment, ‘4+’ objects which
are referenced in the ‘-’ object slots (included inherited objects) are also present. Thus an
environment contains :

e the ‘-’ object that defines it, which we call the interface object;

e the ‘+’ objects referenced through the slots of the interface object, including inherited
ones (see the following sections for more details about inheritance);

e the objects created (cloned) after the environment creation;

e obviously, every object expanded in the aforementioned objects.

The Method Call Queue

To each ‘-’ object is attached a method call queue. When a call is made to a ‘-” object, the call
is actually stored in its call queue. The method is then executed when every previous call have
been processed: there is no concurrency inside an environment. Once there is no pending call
any more, the objects is put in a sleep state until in receives another call.

Following the implementations, the method call queue can be a shared memory segment
using mutual exclusion, a network socket, a native facility. ..

In the case where a ‘-” object calls one of its methods, the call is directly executed; it doesn’t
go through the queue. This happens when the the call is done on self implicitely. When the
receiver is explicit (Self.method;), the call is done via the queue.

3.14. COP: CONCURRENT OBJECT PROTOTYPES 103

Waiting for the Return Value

The calling object can chose to either wait for the result of the method call (its return value)
or continue the execution in a parallel fashion. When the method returns no value, it is always
executed concurrently without waiting for its termination. If it returns a value, then the calling
object waits for its termination only if it makes use the this value; otherwise it behaves as if
there was no such value, as in the previous case.

Advantages of the COP Model

The clear advantage of this model is the total lack of synchronization needs, even inside the envi-
ronments. This comes from the fact that there can be at most one execution in an environment
at a time.

Since ‘4+’ objects aren’t shareable among execution environments and ‘- ones define their
own, the only thing that might be manipulated by several simultaneous executions is the method
call queue. But as it is compiler’s business to manage it, there is nothing to do from a program-
mer point of view. Moreover, creating a new environment is as simple as creating or cloning a
-’ object.

3.14.2 Communication Between Environments

tmmmmmmmegmine, [@lramt] tmmmmmmidoa-
—c ' :
= 1 P ' ~~~~~ Pointer on C impossible

1
1
afium-n | :
. . ,
P [rothod a e S Possible
1 call
! '
1
m-nae=8 \ || '
........ 1
| owen @) ;
P < —o [@[raw-0 |

..

Non-Mutable Objects

For the purpose of inter-environment communication, we need a new kind of object that can
pass beyond the bounds of an environment, beside ‘-’ and expanded objects. These objects are
referred to as non-mutable objects. Such an object has slots that are all non-mutable: they hold
a value that cannot be changed or a reference to a non-mutable object that cannon be changed
either; so this is a recursive property.

Any object can be turned into a non-mutable object, using the ‘to_non_mutable’ method.
This method is recursive: it will be called onto every object contained in each slot. Once a
non-mutable object has been created this way, it cannot be turned back into a mutable state.

However it is still possible to create a clone of a non-mutable object using its ‘clone’ method.
But beware, the clone itself will be mutable, but not the objects referenced through its slots. So
you have to manually call ‘clone’ on the slots that require it. You also have the possibility to
use the ‘deep_clone’ method that will recursively clone the object and all the ones contained
in its slots.

104 CHAPTER 3. LANGUAGE REFERENCE

Object Sending

Only ‘-’ objects may be accessed from other execution environments by calling their meth-
ods. This corresponds to the message-passing style of object-oriented programming. Given
this property, the parameters that can be passed as method arguments are ones that can cross
environment bounds. Namely they are one of the following:

e a ‘-’ object;

e an Expanded object;

e an object containing no data;

e a non-mutable object or a ‘+’ object that has been made non-mutable.

While the first three can be determined at compile time, the last one is checked at runtime.
In case of violation, the program will either fail to compile or crash.

3.14.3 Typing Rules
Inheritance Rules

If a ‘- object inherits from a ‘+’ object, a clone of this object implies the creation of a new
execution environment with the duplication of the ‘4’ parent. This is actually the case for every
slot of the object: the ‘deep_clone’ method is thus called instead of the ‘clone’ one.

A ‘- parent object, being accessible from everywhere, doesn’t get duplicated this way; it is
useless since its purpose is to be shared among other environments. A ‘-’ parent can then be
inherited by any other object, being -’ or ‘+’. A ‘-’ parent cannot be expanded.

It is worth noting that an object can inherit from several ‘-’ objects; multiple different
environments can then be present in a single inheritance tree, as in the following example:

Section Header
- name := VIDEO;

Section Public
- line (x1, y1: INTEGER) to (x2, y2: INTEGER) <- (...);

Section Header
- name := WINDOW;

Section Inherit
+ parent_video:VIDEO := VIDEO;

Section Public
- line (x1,y1:INTEGER) to (x2,y2:INTEGER) <-
(+ new_x1, new_yl, new_x2, new_y2: INTEGER;
// Clip and translate coordinates into new_*, then send back to VIDEO
parent_video.line (new_x1, new_yl) to (new_x2, new_y2);

)

3.14. COP: CONCURRENT OBJECT PROTOTYPES 105
| 1
: a [e = o]
1 1
1
a/ .
| e
P :
A T TTT====
L I Py [y [l 1

Al o oo
 [omm @

@ |+ name: = Bl TMAP

P imo]

W NDOW cl one

Ao oo
 [omem o}

@ |+ name: = Bl TMAP

P]

—
Al = o]
/

[omen @
P[]

m | name: = | MAGE |

V.|
T |
P[]

First Wndow on screen

@ |+ name: = BACKGROUND|

In this example, the VIDEO object and the WINDOW objects each run in a different environ-
ment due to the ‘-’ scope of their ‘name’ slot.

The last case, namely a ‘+’ object inheriting from another ‘+’ object, is just the “classic”
inheritance, out of the scope of the COP specification.

Assignment Rules

In addition to type checking, assignments must deal with the scope of an object when it is being
assigned to a variable. While a variable of one type can hold an object whose type is any of the
descendents of the variable type (or the variable type itself), it can only receive an object whose
type is of the same scope. A ‘-’ variable can only hold a ‘-’ object and a ‘+’ variable can only

hold a ‘+’ object. For instance:

Section Header

- name := A;

Section Header
+ name := B;

Section Inherit

+ parent: A := A;

Section Header

- name := C;

106 CHAPTER 3. LANGUAGE REFERENCE

Section Inherit
+ parent:B := b;

[5
5
3
1]
>

| |+ parent_a

Al ew-c |
.

b
+
3

H
I
w

[|

var:A;

var := A; // OK.
B; // Denied: ‘var’is -’ (A) whereas ‘B’ is ‘+’!
c; // OK.

var :

var

In this example, B and C' are in the same execution environment while A has its own.

3.14.4 Creating Execution Environments

Execution environments, which might be mapped onto threads depending on the operating
system the program has been compiled for, are only created when ‘-’ objects get used. There are
however three ways to achieve creation of a new environment: declaring a ‘-’ prototype, cloning
a ‘-’ prototype and using the SEPARATE generic prototype.

‘> Prototypes

Since a prototype is already a living object in prototype-based object-oriented languages, declar-
ing a prototype with the ‘-’ scope applied to the ‘name’ slot is sufficient to create a new envi-
ronment.

Cloning a ‘-’ Prototype

A ‘-7 prototype defines a new execution environment. Then cloning a prototype whose ‘name’
slot has the ‘-’ scope implies creating a new environment along in the process. This is the main
method behind massive parallelism, for instance worker threads in a web server.

The SEPARATE Generic Prototype

Last but not least, a new environment can be created using the SEPARATE generic prototype.
This one lets you manually create new environments “by hand” on a per-object basis. This may
be used for example to create a shared object that can be accessed by several environments
at once, by passing it through method parameters to objects in other environments since only
constant and ‘-’ objects can be sent this way.

3.15. EXTERNALS 107

Basically, a SEPARATE[E] object is just an enclosed expanded E object in a ‘-’ container. It
is defined this way:

Section Header
- name := SEPARATEIE|;

Section Inherit
+ parent:Expanded E;

a + nane: = STRI NG
P [storage |

m |- name: = SEPARATE[STRING | |

| |+ par ent |

3.15 Externals

There are two ways to include C code in Lisaac: the external slot in Section Header or
directly in the Lisaac code. It is defined between °.

3.15.1 Slot external

C code defined in the external slot is directly included in the code. You can define includes,
functions, macros, ...

Section Header
+ name := EXAMPLE;

- external := ‘#include <stdio.h>
// Hardware ’print_char’
int print_char(char car)

{
fputc(car,stdout);

s
A This C code is NOT verified by the Lisaac compiler.

3.15.2 C code in Lisaac

C code can be inserted anywhere in the code (in the definition of a slot, even in Require / Ensure
or Invariant).

- slot <-
(+ a:INTEGER;
a := count;
‘fputc(’Y’,stdout) ‘;
);

108 CHAPTER 3. LANGUAGE REFERENCE

You can use a Lisaac local variable or argument preceded by 'Q’.

- slot <-

(+ a:CHARACTER;
‘fputc(@a,stdout) ¢;

)

A Global variables (slots) are not permitted in the external, if you have to work with it, use
a local variable.

- data:CHARACTER := ’Y’;
- slot <-
(
‘fputc(@data,stdout) ; // Forbidden !
);

A Variable used in external are read-only.

- slot <-
(+ a:INTEGER;

‘Qa ++°¢; // Forbidden !
);

You can assign a variable with the result of an external, but you have to indicate the return
type after :.

- slot <-
(+ a:INTEGER;

a := ‘@a ++‘:INTEGER;
);

You can also indicate the dynamic type of the return, if any, as a list of types between parenthesis.

- slot <-
(+ a,b:INTEGER;
+ C:BOOLEAN;

a := count;
b := size;
c := ‘Ga == @b‘:BOOLEAN(TRUE,FALSE) ;

)

A The compiler optimizes the code by deleting variables that are not used and the code of
the external if the result is not used (dead code). It can be hazardous if you don’t use the return
value of a C function but really need the function to be executed.

- slot <-
(+ a:CHARACTER;

a := ‘getchar() ‘:CHARACTER;
)

If you don’t use ’a’, the variable and the assignment will be simply deleted ! You can force an
external to be persistent by using parenthesis around the result type.

3.15. EXTERNALS 109

- slot <-
(+ a:CHARACTER;

a := ‘getchar() ‘: (CHARACTER) ; // persistent external
)3

In this case, the result is precised as optionally used. The compiler will not optimize the code
or delete the external, even if the result is not used.

3.15.3 Lisaac code in C

As explained in 3.3.6, the Section External is reserved to define slots which keep their Lisaac
name in the generated C code. You can then link the produced C code with other programs
keeping the name of the functions.

For example, a slot defined as:

Section Public
- slot v:INTEGER :INTEGER <- /* ... %/

could be compiled and produce a C function

static int slot__H8(unsigned long v__GGC)
// code is an internal coding of the compiler

If you define the slot in a Section External you keep the name:

Section External
- slot v:INTEGER :INTEGER <- /* ... %/

This code will be compiled in:
int slot (unsigned long v_UCC) // It keeps the name of the function

You can’t define function with keywords. If an external function must have multiple arguments
use a list:

Section External
- slot (a,b:INTEGER,c:CHARACTER) :INTEGER <- /* ... %/

Which will be compiled in:

int slot (a__EDC,b__UFC:integer,c__CCD:character)

Note that in this case, the function is not static, and can be accessed by other programs (not
inlined).

3.15.4 Lisaac external

Externals composed of a simple integer are Lisaac externals (compiler native functions). Exam-
ple:

J 2 J ;
These externals are used for example to define basis operations.

- ’>’ right 60 other:SELF :BOOLEAN <- ‘1°¢;
- 7= left 80 other:SELF :SELF <= 2¢,
/* ... x/

110 CHAPTER 3. LANGUAGE REFERENCE

Chapter 0100b

The Lisaac Library

In this chapter you will find the description of some prototypes and functions, some of them are
at the core of the library, other are the most commonly used.

4.1 OBJECT

OBJECT is the base prototype which contains all the core functions needed to program efficiently.
All the prototypes of the library inherit, directly or not, from this prototype. When defining
your own prototypes, don’t forget to inherit from OBJECT if you want to use its functions.

The most common slots are:

//

// Compiler consideration.

//

- object_size:INTEGER // size of the current prototype (in bytes)

- is_.debug_-mode:BOOLEAN // indicates if the object was compiled using the debug op
//

// Control Error.

//

- print_runtime_stack // print stack as defined in 3.13

- die_with_code code:INTEGER // Terminate execution with exit status code
- crash_with_message msg:ABSTRACT_STRING // Terminate execution writing msg
//

// Common Function.

//

- ’==’ right 60 other:SELF :BOOLEAN // TRUE if objects are equal (to redefine in e:
- ’!==’ right 60 other:SELF :BOOLEAN

- clone:SELF // clone of the object

- to_pointer:POINTER // return a pointer on this object

4.2 NUMERIC

All the numbers inherit from the NUMERIC prototype. There are conversion facilities between
the types, as you can see on the following figure.

111

112 CHAPTER 4. THE LISAAC LIBRARY

NUMVERI C

|
|
|
|
|
|
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J
-
|
|
|
|
|
|
|
J

i

FI XED_REAL

| 11
| [
| |
| 11 |
| 1 |
I ; T | I
| | |
: U NTEGER 8 | [TNTEGER 8_H : ! :
[L AN LI S A T [ONSI GNED_FT XED REAL]|
| ' S ' I T
I -I_*_I I\A_*_I-] I
| Ul NTEGER 16 | NTEGER_16 11 REAL_16_16 - UREAL_16_16 |
L 1 \\ [1b | | | 1
N I N [- -7
N 11 I I
H U NTEGER 32 | [TNTEGER 32 H I REAL 24 8 |——I —{OREAL 24 8 H I
T \ 1 11 r T |
I N I ————d —}—— | ————A
AN
N | | |
H U NTEGER 64 | [TNTEGER 64 H : U REAL_26_6 |——=——| UREAL 26 _6 H :
| | L | | J
I I —-———= L —=—==1
U NTEGER Bl G--»[TNTEGER BI G
— —» Aut 0- cast . Not all the types and conversions are drawned here for
» | nheritance. sinmplification needs.

For example, a UINTEGER_8 can be converted to a INTEGER_32 without range control, using
auto-export.

+ a:INTEGER_32;
+ b:UINTEGER_8;
/x ... x/

a := b;

When you do not have an explicit value’s type, INTEGER is chosen for integer constant, or REAL
for real constant. Any conversion is done after assignment.

+ a:INTEGER_S;
/* ... %/
a := 3; // 3 is INTEGER, auto-casted to INTEGER'8, with range control.

The most commonly used slots are:

//

// Arithmetic operations

//

- ’+7 left 80 other:SELF :SELF // add

- ’-7 left 80 other:SELF :SELF // substract

- ’x> left 100 other:SELF :SELF // multiply

- ?/’ left 100 other:SELF :SELF // divide

- %’ left 100 other:SELF :SELF // modulo

- %%’ right 120 exp:SELF :SELF // power

- '+’ :SELF // positive (unary message)

- ’=’ :SELF // negative (unary message)

4.2. NUMERIC

//
// Bitwise operations

//

- &’ left 100 other:SELF :SELF
- 2|> left 80 other:SELF :SELF
- 27> left 80 other:SELF :SELF

-’72 :SELF

- ’>>’ left 100 other:NUMERIC :SELF
- <<’ left 100 other:NUMERIC :SELF

//
// Comparisons :

//

113

// bitwise and

// bitwise or

// bitwise xor

// bitwise complement (unary message)
// logical shift right

// logical shift left

- ’=’ right 60 other:SELF :BOOLEAN

- 2!=’ right 60 other:SELF :BOOLEAN

- ’>’ right 60 other:SELF :BOOLEAN

- ’<’ right 60 other:SELF :BOOLEAN

- ’<=’ right 60 other:SELF :BOOLEAN

- ’>=’ right 60 other:SELF :BOOLEAN

//

// Loops

//

- to limit_up:SELF do blc:BLOCK // iterate forward from Self to limit up
- downto limit_down:SELF do blc:BLOCK // iterate backward from Self to limit down
- to limit_up:SELF by step:SELF do blc:BLOCK // iterate forward with step

- downto limit_down:SELF by step:SELF do blc:BLOCK // iterate backward with step

//
// Print
//

- to_hexadecimal:STRING
- print

//

// Debug

//

- ’7’ b:BLOCK

Ezxzample: use of loops

1.to 10 do { i:INTEGER;
i.print;

// returns a string with the hexadecimal value
// prints the value to the standard output

// assertion, see 3.13

// i is the argument of the block

114 CHAPTER 4. THE LISAAC LIBRARY

}s

16.downto 0 by 2 do { i:INTEGER;
i.print;
}s

4.3 CHARACTER

CHARACTER is an expanded prototype, represented by one byte, with a character value. It can
be autocasted in smallint without range control. Here are a few commonly used slot:

//

// Conversions

//

- code:SMALLINT // ASCII Code

- to_upper:CHARACTER // returns the equivalent character in upper case
- to_lower: CHARACTER // returns the equivalent character in lower case
//

// Tests

//

- is_letter:BOOLEAN // Is it a letter (’a’ .. ’z’ or ’A’> .. ’Z’) 7

- is_digit : BOOLEAN // Belongs to ’0’..°9’.

A character is defined between ’.

+ C:CHARACTER;
c =’z
'z is_letter.if /x ... x/

4.4 BOOLEAN

BOOLEAN is an expanded type from which inherit TRUE and FALSE. By default, a BOOLEAN
is FALSE. Conditionnals methods are declared in BOOLEAN but their real definition appears in
TRUE or FALSE, the dynamic types of BOOLEAN.

For example, the if ... else method is declared deferred (to be redefined) in BOOLEAN.

- if b_true:BLOCK else b_false:BLOCK <- deferred;
In TRUE the slot is redefine:
- if b_true:BLOCK else b_false:BLOCK <- b_true.value;
In FALSE the slot is redefine:
- if b_true:BLOCK else b_false:BLOCK <- b_false.value;
Just examine the following call:
(a > b).if { "Yes!".print; } else { "No!".print; };

The list (a > b) returns a boolean, which will dynamically be TRUE or FALSE. Then the evalu-
ation of the slot if ... else will be done in the corresponding prototype and will finally return
the real result by late binding.

4.5.

BLOCK

115

e (a > b) returns TRUE : the code evaluated is b_true.value so { ”Yes!”.print; }

e (a > b) returns FALSE: the code evaluated is b_false.value so { "No!”.print; }

All the functions of BOOLEAN follow the same pattern using late binding.

other:
other:
other:
other:
other:

BOOLEAN
BOOLEAN
BLOCK
BLOCK
BOOLEAN

’=>’right 25 other:BOOLEAN

//

// Logical operations :
//

- 717 :BOOLEAN
- &’ left 20

- 77 left 10

- 2&&’ left 20

- 7]’ left 10

- 27 left 10
//

// Conditionals
//

4.5 BLOCK

:BOOLEAN

:BOOLEAN
:BOOLEAN
:BOOLEAN

:BOOLEAN
:BOOLEAN

if true_block:BLOCK :BOOLEAN

if true_block:BLOCK else false_block:BLOCK

// not (unary slot)

// and (strict, total evaluation)
// or (strict, total evaluation)
// and then (semi strict)

// or else (semi strict)

// xor

// imply

elseif cond:BLOCK then block:BLOCK :BOOLEAN
elseif cond:BLOCK then block:BLOCK else block_else:BLOCK

Here are a few examples of using BOOLEAN.

+ a,b,c,d,e:BOOLEAN;

/x ... x/

e :=(a | b) & { c -> d};

/*x ... x/

(a ~ ¢).if { "Ok!".print; }
.elseif { 4 } then { "Ko!".print; } else { "Maybe!".print; };

V£ T

// return a BOOLEAN

BLOCK is a particular prototype because it is implicitly constructed using braces { and }.
For more informations about blocks see 3.11. Here are some functions defined in the BLOCK
prototype.

//
// Conditional :

//
- 7||’ left 10 other:BLOCK :BOOLEAN

'4&° left 20 other:BLOCK :BOOLEAN

//
// Loop :
//

// or else
// and then

116

while_do body:BLOCK
do_while test:BLOCK
until_do body:BLOCK
do_until test:BLOCK

//

// Debug
//
. 7?7

FEzxzample: using loops

j:INTEGER;
j < 10 }.while_do { j.print; j
0;

j.print; j

{
J
{

4.6 NATIVE_ARRAY

CHAPTER 4. THE LISAAC LIBRARY

// while Self is TRUE, evaluate body
// evaluate Self while test is TRUE
// until Self is TRUE, evaluate body
// evaluate Self until test is TRUE

// assertion, see 3.13

=3+ 1}

:= j + 1; }.do_until { j >= 10 };

NATIVE_ARRAY is a particular collection prototype using genericity. It’s an expanded type which
have the particularity to be directly matched on memory data. This prototype is at the core of

all the collections (arrays).

A Be careful when using a NATIVE_

ARRAY, there is no bound control, it’s equivalent to a

variable defined with (void *) in C. The use of NATIVE_ARRAY is reserved to experts because of
its low level. If you want more information about its use, watch the code of this prototype and

how it is used in collections.

e T e T e T e]
NATI VE_]ARRAY[E]
y A A A
Pl+ stot1 [2]||P[+ stot1 [2]||P[+ stot1 [3]| [P[+ slot1 [4
+ slot2 |5||! + slot2 |8]| [l |+ slot2 |1f|! + slot2 |2]|!
E. cl one E. cl one E. cl one E. cl one
E is not an Expanded Object
Pl+ stot1 [Z]|]|P[+ stot1 [a]|||P[+ slot1 O
+ slot2 |2 + slot2 |1 + slot2 |4
NATI VE_ARRAY[Expanded E]
|| 1 | 2120 | 0 | 45 | 8 |

NATI VE_ARRAY[| NTEGER]

4.7 STRING

I NTEGER i s an Expanded Obj ect

There are 3 type of string in the library: ABSTRACT_STRING, STRING_CONSTANT and STRING.
ABSTRACT_STRING is an abstract prototype, which defines the standard operations on a

string.

STRING_CONSTANT inherits of ABSTRACT_STRING. A STRING_CONSTANT can’t be modified
after being created. You can create it as following:

4.7. STRING 117

+ a:STRING_CONSTANT := "Hello world !";

STRING also inherits of ABSTRACT _STRING. This object can be modified in many ways.
Those 3 prototypes are similar in their internal representation.

Section Header

+ name := ABSTRACT_STRING -> STRING; // can be autocasted in STRING
/x ... x/
Section ABSTRACT_STRING // ABSTRACT_STRING and its descendants

+ storage:NATIVE_ARRAY [CHARACTER] ;

Section Public

/x ... x/

s[otoae o[l T To]
p[rcount__[5]

ABSTRACT_STRI NG

In ABSTRACT_STRING you can find the following slots (visible from STRING and STRING_CONSTANT,
because of the inheritance.

//

// Features

//

+ count:INTEGER // Number of elements of storage

- lower:INTEGER := 1; // The elements are numbered from 1 to count

- upper:INTEGER // Number of the last element

- capacity: INTEGER // Number of reserved elements for storage

//

// Access

//

- item index:INTEGER :CHARACTER // Element number index

- ’==’ left 40 other:ABSTRACT_STRING :BOOLEAN // True if strings have the same tex
- same_as other:ABSTRACT_STRING :BOOLEAN // Case insensitive ’==’

//

// Testing

//

- has ch:CHARACTER :BOOLEAN // True if ‘ch’ is present

- has_substring other:ABSTRACT_STRING :BOOLEAN // True if ‘other’ is present

118 CHAPTER 4. THE LISAAC LIBRARY

//
// Operations
//

- ’+’ other:ABSTRACT_STRING :STRING // New STRING, concatenation of Self and other.
- substring start_index:INTEGER to end_index:INTEGER :STRING // Create a substring

A STRING_CONSTANT is particular because it can’t be modified.
- to_string:STRING // create a STRING object from a STRING_CONSTANT

A STRING object is not an expanded prototype so it must be cloned from the 'master’ object.

//

// Creation

//

- create needed_capacity:NUMERIC :SELF // Create with needed_capacity but empty
- create_from_string str:ABSTRACT_STRING :SELF // Create with a copy of sir

//

// Modifications

//

- clear // Count is reseted, but capacity remain identical
- append other:ABSTRACT_STRING // Appends other to Self

- prepend other:ABSTRACT_STRING // Prepends other to Self

- put ch:CHARACTER to index:INTEGER // Puts ch at position index

- add_last ch:CHARACTER // Appends ch to Self

- to_lower // Converts all the characters to lower case

- to_upper // Converts all the characters to upper case

4.8 FAST_ARRAY

FAST_ARRAY is an array with a fixed lower bound using genericity. You can define a FAST_ARRAY
of any object. As for STRING, FAST_ARRAY has a storage:

+ storage:NATIVE_ARRAY|[E|; // Internal access to storage location
+ count:INTEGER; // Number of elements of the array

FEzample: FAST_ARRAY of an expanded object

+count 3

FI XED_ARRAY[| NTEGER]

FEzample: FAST_ARRAY of a non expanded object

4.8. FAST_ARRAY 119

p[+storage @ ‘I|Q|Q|O|Q|
+count 4 v
FI XED_ARRAY[STRI NG A 4’| A A

p[eount___[]
A\
Alstorage [[Tsfalalc]

P oot o)
A
al+storage_ @——[e [1 [[o]
P Cooum__[5]
//
// Features
//
- lower:INTEGER := 0; // The elements are numbered from O to count - 1
- upper:INTEGER // Number of the last element
- capacity: INTEGER // Number of reserved elements for storage
//
// Creation
//

- create new_count:numeric :SELF // Create an array of new_count elements
// initialized to the default of ’E’

- create_with_capacity new_count:numeric :SELF // Create an empty array
// of new_count elements reserved

//

// Access

//

- item index:INTEGER :E // Element number index

//

// Testing

//

- ’==’ right 60 other:SELF :BOOLEAN // TRUE if objects have the same elements
//

// Modifications

//

- subarray min:NUMERIC to max:NUMERIC :SELF // Creates a subarray

- append other:SELF // Appends other array

- add_last element:E // Appends element

- put element:E to i:NUMERIC // Puts element at position i

- clear // Count is reseted, but not capacity

120 CHAPTER 4. THE LISAAC LIBRARY

4.9 STD_INPUT

STD_INPUT is used to modelize the standard input for the program. You can use directly the
master object STD_INPUT when calling slots. Clone of this prototype is useful only if you have
multiple inputs.

- read_character: CHARACTER // returns the character read

- read_line_in str:STRING // puts the line read in str (must be not NULL)
- last_integer // last integer read

- read_integer // read integer and put result to last_integer

FEzxamples: use of functions

+ C:CHARACTER;
¢ := STD_INPUT.read_character;

4.10 STD_OUTPUT

STD_OUTPUT is used to modelize the standard output for the program. You can use directly the
master object STD_OUTPUT when calling slots. Clone of this prototype is useful only if you have
multiple outputs.

- put_character c:CHARACTER // writes a single character on the output
- put_string s:ABSTRACT_STRING // writes a string
- put_new_line // writes a new line

FEzxamples: use of output

STD_OUTPUT.put_character ’Y’;
STD_OUTPUT.put_string "Hello world !";

4.11 COMMAND_LINE

COMMAND_LINE represents the command line of executable’s call. If you have to get arguments
from the command, use this prototype.

- count:INTEGER // number of arguments
- item idx:INTEGER :STRING_CONSTANT // argument number idx
// name of the executable is 0, first argument is 1

FEzxample: use of functions

COMMAND_LINE.item 1.print;

4.12. DEFAULT VALUES

4.12 Default values

121

Type Value

NUMERIC 0

CHARACTER '\(’

BOOLEAN FALSE

FALSE FALSE

nothing () or voID

other object NULL

122 CHAPTER 4. THE LISAAC LIBRARY

Chapter 0101b

The Lisaac World

5.1 Glossary of useful selectors

This glossary lists some useful selectors. It is by no means exhaustive.

Name: Arity: Associativity: Semantics:

5.1.1 Assignment

= binary right Assignment with value
7= binary right Assignment with value or NULL if bad type
<- binary right Assignment with code

5.1.2 Cloning

clone create a clone

5.1.3 Comparisons

= binary left reference identity

I= binary left not equal (reference)

== binary left structural equality (first level)
== binary left not equal (structural)

< binary left less than

> binary left greater than

<= binary left less than or equal

>= binary left greater than or equal
hash_code hash value

123

124

5.1.4 Numeric operations

+ binary left
- binary left

* binary left
/ binary left
% binary left
ok binary left
+ unary right

- unary right

CHAPTER 5. THE LISAAC WORLD

add
subtract
multiply
divide
modulus
exponential
positive
negative

5.1.5 Logical operations (BOOLEAN) (see 5.2.1)

& binary left
&& binary left
| binary left
[binary left
A or AA binary left
-> binary left
=> binary left
! unary right

and (strict, total evaluation)
and then (semi-strict)

or (strict, total evaluation)
or else (semi-strict)

xor

imply

imply a block

not (negation)

5.1.6 Bitwise operations (INTEGER)

& binary left
| binary left
A binary left
~ unary right
<< binary left
>> binary left

5.1.7 Control
Conditonal (see 5.2.2)

Aif_true B

Aif false B

Aif B

A.if B else C

A if B.elseif C then D

A.if B.elseif C then D else E

A.when V then B

bitwise and

bitwise or

bitwise xor

bitwise complement

logical left shift (filled low bits by zero)
logical right shift (filled high bits by zero)

evaluate B if A is True, no return value

evaluate B if A is False, no return value

evaluate B if A is True, result is receiver A

evaluate B if A is True, C if A is False

evaluate first arg if False, if arg is True then second arg
is evaluate, result is the first arg evaluation

evaluate first arg if False, if arg is True then second arg
is evaluate, else the third arg is evaluate

once the receiver is equal to first

5.2. CONTROL STRUCTURES: BOOLEANS AND CONDITIONALS 125

argument, the second one is evaluated
A.when V1 to V2 then B if the receiver is in the interval V1-V2, the last argument is evaluat
A.when V1 or V2 then B if the receiver is V1 or V2, the last argument is evaluated

Basic looping (BLOCK) (see 5.3)

loop repeat the block forever

pre-tested looping (BLOCK) (see 5.3.1)

A.while_do B while receiver A evaluates to True, repeat the block B argument
A.until_.do B while receiver A evaluates to False, repeat the block B argument

post-tested looping (BLOCK) (see 5.5.2)

B.do_while A repeat the receiver block B while the argument A evaluates to True
B.do_until A repeat the receiver block B until the argument A evaluates to True

Iterators (INTEGER) (see 5.5.3)

V1to V2do B iterate forward

V1.to V2 by S do B iterate forward, with stride
Vl1.downto V2 do B iterate backward

V1.downto V2 by S do B iterate backward, with stride

5.1.8 Debugging

: unary right crash if argument expression is False (BLOCK)
? B binary crash if block is False and level of debug higher (NUMERIC)

5.2 Control Structures: Booleans and Conditionals

5.2.1 Booleans expression

The boolean expression occurs by sending of message to TRUE or FALSE object.

test := ((a | b) &) —> 4d;
test2 := ((i>3) | (j<=20));

126 CHAPTER 5. THE LISAAC WORLD

In this example, all the expressions are evaluated.
Typically, there is a “or” and “and” operators which evaluates that by need the right part of
the expression.

test := (a || {! b}) && {c -> test};
// If a is False then ’! b’ is evaluate.
// If (a || ' b) is True then ’c -> test’ is evaluate.

test2 := ((i>3) || {j<=20});
// If (i>3) is False ’j<=20’ is evaluate.

5.2.2 Conditionals

A fundamental control structure in Lisaac, like in many languages, is the conditional. In Lisaac,
the behavior of conditionals is defined by two unique boolean objects, TRUE and FALSE. Boolean
objects respond to the if else message by evaluating the appropriate BLOCK argument.

For example, TRUE implements if else this way:

- if true_block:BLOCK else false_block:BLOCK <- true_block.value;

That is, when TRUE is sent the if else message, it evaluates the first block and ignores the
second. Conversely, the if else implementation in FALSE is:

- if true_block:BLOCK else false_block:BLOCK <- false_block.value;

5.3 Loops

The numerous ways to do loops in Lisaac, enumerated in section 5.1 above, are best illustrated
by examples.

5.3.1 Pre-tested looping

Here are two loops that test for their termination condition at the beginning of the loop:

{ conditional expression }.while_do { /* ... */ };

{ conditional expression }.until.do { /* ... */ };

In each case, the block that receives the message repeatedly evaluates itself and, if the
termination condition is not met, evaluates the argument block. The value returned by both
loop expressions is void. while_do tests the condition and loops while it is true, whereas
until_do tests the condition and loops until it is true. In both case, since the test is done before
any looping, the loop block may not be executed at all.

For illustration purposes, here is the implementation of the while_do message in BLOCK:

- while_do loop_body:BLOCK <-
(7 {loop-body != NULL};

Self.value.if {
loop_body.value;
Self. while_do loop_body;

+s
)

Of course, self is optional.

5.4. COLLECTIONS 127

5.3.2 Post-tested looping

It is also possible to put the termination test at the end of the loop, ensuring that the loop body
is executed at least once:

{ /* ... x/ }.do_while { conditional expression };

{ /* ... x/ }.do_until { conditional expression };

5.3.3 Iterators looping

1.to 10 do { i:INTEGER;
VAT ¥
b

10.downto 1 do { i:INTEGER;
/* ... %/
I¥

The '’ argument of the block of execution contains the current value of the iteration.

5.4 Collections

5.4.1 List of collections

ARRAY : l-dimension resizable array
ARRAY2: 2-dimension resizable array
ARRAY3: 3-dimension resizable array
FAST_ARRAY : 1-dimension fixed array
FAST_ARRAY2: 2-dimension fixed array
FAST_ARRAY3: 3-dimension fixed array
LINKED_LIST : 1 way linked list
LINKED2_LIST: 2 ways linked list

SET: mathematical set of hashable objects
DICTIONNAY: associative memory

5.4.2 Example

a:FAST_ARRAY [INTEGER] ;

b:INTEGER;

:= FAST_ARRAY [INTEGER] .create 10;
.put 5 to O;

.put 2 to 1;

:= a.item 0;

T P P o+ +

27

CHAPTER 5. THE LISAAC WORLD

Bibliography

[Hum90] R. Hummel. Interruption and exception. In Intel486 Microprocessor Family Program-
mer’s Reference Manual, pages 83-104, 1990.

[Mey94] Bertrand Meyer. Eiffel, The Language. Prentice Hall, 1994.

[PBy00] H. Dubois ...P. Borovansk y, H. Cirstea. Library reference manual. In ELAN, pages
20-24, 2000.

[Son00] B. Sonntag. http://www.isaac0S.com. Site web: Isaac (Object Operating System).,
2000.

[US87] D. Ungar and R. Smith. Self: The Power of Simplicity. In 2nd Annual ACM Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’87),
pages 227-241. ACM Press, 1987.

129

