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Abstract

We introduce turboTDDFT, an implementation of the Liouville-Lanczos approach to linearized
time-dependent density-functional theory, designed to simulate the optical spectra of molecular
systems made of up to several hundred atoms. turboTDDFT is open-source software distributed
under the terms of the GPL as a component of Quantum ESPRESSO. As with other components,
turboTDDFT is optimized to run on a variety of different platforms, from laptops to massively
parallel architectures, using native mathematical libraries (LAPACK and FFTW) and a hierarchy
of custom parallelization layers built on top of MPI.
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Computer: Any computer architecture
Operating system: GNU/Linux, AIX, IRIX, Mac OS X, and other UNIX-like OS’s
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Nature of problem: Calculation of the optical absorption spectra of molecular systems.
Solution method: The dynamical polarizability of a system is expressed in terms of the resolvent of
its Liouvillian super-operator within time-dependent density-functional theory, and calculated using a
non-Hermitean Lanczos method, whose implementation does not require the calculation of any virtual
states. Pseudopotentials (both norm-conserving and ultrasoft) are used in conjunction with plane-wave
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basis sets.
Restrictions: Spin-restricted formalism. Linear-response regime. No hybrid functionals. Adiabatic XC
kernels only.
Unusual features: No virtual orbitals are used, nor even calculated. A single Lanczos recursion gives
access to the whole optical spectrum.
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LONG WRITE-UP

1. Introduction

Time-dependent density-functional theory (DFT [1, 2], TDDFT [3, 4]) is gaining increasing
popularity as a powerful method for the numerical simulation of optical spectra in a variety
of molecular systems. In spite of its numerous successes, TDDFT is still affected by two major
limitations. The first, and more fundamental, is the inability of static, local, exchange-correlation
(XC) kernels to represent the long-range tail of the electron-hole interaction, which is essential
to account for charge-transfer excitations, as well as excitons in solids and Rydberg series in
molecules [5, 6, 7]. The second, more practical, difficulty stems from the poor capacity of current
implementations of TDDFT to address extended portions of the spectrum of complex molecular
systems (made of several hundreds of independent atoms) [9, 10]. The present paper addresses
the second difficulty by making a new, and supposedly superior, implementation of (linearized)
TDDFT [9, 10, 11] widely available to the scientific community.

Current implementations of TDDFT fall into three broad categories. In the first, the TDDFT
charge susceptibility is obtained from the independent-electron susceptibility using a Dyson-like
linear equation [13, 14]; in the second, the poles of the susceptibility, corresponding to excitations
energies, are addressed as the eigenvalues of a suitable linear (super-) operator equation [14,
15]; finally, the full spectrum of a system can be obtained by Fourier analyzing the time series
generated by the expectation value of some observable (such as the e.g. dipole) calculated along
the perturbed time evolution of the TDDFT molecular orbitals [16, 17]. The relative merits
of each one of these approaches are discussed in Ref. [10], where an alternative approach to
the calculation of optical spectra within TDDFT, named the Liouville-Lanczos method, is also
presented, following a suggestion originally proposed in Ref. [9]. The distinctive feature of
the new method is that it allows for the full spectrum of a system to be calculated over a broad
frequency range, with a computational effort which is only a few times larger than that needed
by a single ground-state DFT or static density-functional perturbation theory (DFPT) calculation
[18, 19].

In this paper we introduce a computer code, named turboTDDFT, which implements the
Liouville-Lanczos approach to TDDFT, and which is being distributed under the terms of the
GPL license [20], as a component of the Quantum ESPRESSO suite of open-source DFT plane-
wave (PW) pseudopotential codes [21, 22, 23]. In Sec. 2 we provide a minimal theoretical
background and establish some notation for the problem addressed by turboTDDFT; in Sec. 3
we describe the algorithm implemented in turboTDDFT; in Sec. 4 we describe turboTDDFT as
a component of the Quantum ESPRESSO distribution; in Sec. 5 we provide the instructions for
installing turboTDDFT on UNIX systems; in Sec. 6 we give a few examples of the usage of
turboTDDFT for the calculation of the spectra of some prototypical simple molecular systems;
Sec. 7 finally contains our conclusions and perspectives for future work.

2. Statement of the problem, minimal theoretical background, and notation

In the dipole approximation, the response of molecular systems to electromagnetic radiation
is described by the dynamical polarizability tensor, αi j(ω), whose elements are defined as the
dipole moment linearly induced along the i-th Cartesian direction by a perturbing electric field
of unit strength, polarized along the j-th axis, and oscillating at the frequency ω. The absorption
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coefficient is essentially the product of the frequency times the imaginary part of the diagonal el-
ements (or trace) of the polarizability [24]. In this paper we address the dynamical polarizability
of a molecular system at clamped nuclei, and we use atomic (Hartree) units throughout: ~ = 1;
e = 1; me = 1. Since the current implementation of turboTDDFTtreats spin-restricted systems
only, we exclude in the following spin degrees of freedom from our notations for simplicity.

The polarizability of a system of interacting electrons can be expressed as:

αi j(ω) = Tr
(
X̂iρ̂

′
j(ω)

)
, (1)

where carets indicate quantum mechanical operators, X̂i is the i-th component of the dipole (or
position) operator, ρ̂′j(ω) = ρ̂ j(ω) − ρ̂◦, is the response density matrix, ρ̂ j(ω) being the one-
electron density matrix of the system perturbed by an external homogeneous electric field of
unit strength polarized along the j-th cartesian axis and oscillating at frequency ω, and ρ̂◦ is its
unperturbed counterpart. In TDDFT the response density matrix can be expressed as the solution
of the linearized quantum Liouville equation [9, 10, 11, 12]:

(ω − L) · ρ̂′j(ω) = [X̂ j, ρ̂
◦], (2)

where L is the TDDFT Liouvillian of the system, defined as:

L · ρ̂′ ,
[
Ĥ◦, ρ̂′

]
+

[
V̂ ′HXC[ρ̂′], ρ̂◦

]
, (3)

Ĥ◦ is the unperturbed Kohn-Sham (KS) Hamiltonian [2], V̂ ′HXC[ρ̂′] is the linear correction to the
Hartree-plus-XC potential, whose coordinate representation is:

v′HXC(r, ω) =

ˆ (
1

|r − r′|
+ κXC(r, r′;ω)

)
ρ′(r′, r′;ω)dr′, (4)

and κXC is the so-called XC kernel [13] that, in the adiabatic DFT approximation [26], is inde-
pendent of ω. Traces of products of operators, such as in Eq. (1), have the same algebra as scalar
products in linear spaces, Tr

(
Â†B

)
,

(
Â, B̂

)
, and this property is instrumental in expressing the

polarizability as an off-diagonal matrix element of the resolvent of the Liouvillian [9, 10]. By
solving the linear equation (2) we can express the polarizability in Eq. (1) as

αi j(ω) = −
(
X̂i, (ω − L)−1 ·

[
X̂ j, ρ̂

◦
])
, (5)

where (•, •) indicates the scalar product between two operators, in the sense defined above. Of
course, in order to give a well-defined meaning to Eq. (5), a well-defined representation must
be given for operators, super-operators (i.e. operators acting on the linear space of quantum
mechanical operators), and for scalar products defined in this linear space. This will be done in
Sec. 2.1.

The coordinate representation of the response density matrix is:

ρ′(r, r′, ω) = 2
Nv∑

v=1

(
ϕ̃′v(r, ω)ϕ◦∗v (r′) + ϕ◦v(r)ϕ̃′∗v (r′,−ω)

)
, (6)

where ϕ◦v(r) are unperturbed KS orbitals, ϕ̃′v(r, ω) = ϕv(r, ω) − ϕ◦v(r) denotes the first-order cor-
rection to the v-th KS orbital, and Nv is the number of occupied KS states; the factor 2 accounts
for the spin degeneracy of molecular orbitals in non-magnetic systems. Note that in the fre-
quency domain the density matrix is not Hermitian. Being the Fourier transform of a Hermitian
operator, it satisfies the relation: ρ̂(ω)† = ρ̂(−ω).
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2.1. Representation of the response density matrix and of other operators
As shown in Eq. (6), the response density matrix at any given frequency ω is uniquely

determined by the two sets of response orbitals {ϕ̃′v(r, ω)} and {ϕ̃′v(r,−ω)}. Standard time-
dependent perturbation theory indicates that each response orbital ϕ̃′v can be chosen to be or-
thogonal to the KS occupied-state manifold. For this reason the response density matrix of Eq.
(6) has vanishing matrix elements between pairs of occupied and unoccupied states, namely
〈ϕ◦c |ρ̂

′|ϕ◦c′〉 = 〈ϕ◦v |ρ̂
′|ϕ◦v′〉 = 0 ∀(v, v′) and (c, c′), where v and v′ denotes generic occupied (va-

lence)states and c and c′ generic empty (conduction)states. This is to say that in the representa-
tion of the unperturbed KS states the response density matrix has the block structure:

ρ̂′ →

(
0 ρ′vc
ρ′cv 0

)
. (7)

This block structure, which also holds for the commutator [X̂ j, ρ̂
◦], allows us to conveniently

represent the operators appearing in Eqs. (3-5) using sets of 2Nv orbitals, rather than square
matrices. Using such a representation would require the storage of n = 2NNv coefficients to
represent the orbitals, N being the dimension of the one-electron basis set, which is clearly much
more convenient than storing and using the N2 entries of the full representation of the density
matrix. Inspired by these considerations we define the standard batch representation (SBR) of
the response density matrix as:

ρ̂′
S BR
−−−→

(
{qv}

{pv}

)
, (8)

where {qv} and {pv} indicate the sets (batches) of orbitals:

qv(r) =
1
2

(
ϕ̃′v(r, ω) + ϕ̃′∗v (r,−ω)

)
(9)

pv(r) =
1
2

(
ϕ̃′v(r, ω) − ϕ̃′∗v (r,−ω)

)
. (10)

Note that in a time-reversal invariant system the response charge density can be expressed in
terms of the {qv} orbitals alone:

n′(r, ω) = 4
∑

v

ϕ◦v(r)qv(r). (11)

General one-particle quantum mechanical operators can be given a similar representation. The
SBR of a general operator is defined as:

Â
S BR
−−−→

(
{aq

v}

{ap
v }

)
, a, (12)

where the orbitals aq
v(r) and ap

v (r) are defined as

aq
v(r) =

1
2

(
Q̂Âϕ◦v(r) +

(
Q̂Â†ϕ◦v(r)

)∗)
(13)

ap
v (r) =

1
2

(
Q̂Âϕ◦v(r) −

(
Q̂Â†ϕ◦v(r)

)∗)
, (14)

Q̂ is the projector over the KS empty-state manifold. In our implementation we avoid the cal-
culation of empty states by using the relation: Q̂ = Î − P̂, where Î is the identity operator and
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P̂ =
∑Nv

v=1 |ϕ
◦
v〉〈ϕ

◦
v | is the projector onto the occupied state manifold; this definition of Q̂ clearly

requires only the occupied states ϕ◦v [18]. The {aq
v} and {ap

v } functions of Eqs. (13-14) will be re-
ferred to as the upper (or q-like) and lower (or p-like) components of the SBR of the Â operator.
If Â is a Hermitian operator, then its SBR is given by

Â = Â†
S BR
−−−→

(
{Q̂Âϕ◦v}
{0}

)
, (15)

where we have assumed that the ground-state orbitals ϕ◦v are real, as they can always be chosen
for time-reversal invariant problems. Other operators appearing in Eq. (2) are represented as:

[
Ĥ◦, ρ̂′

] S BR
−−−→

(
{(Ĥ◦ − ε◦v)pv}

{(Ĥ◦ − ε◦v)qv}

)
, (16)

[
Â, ρ̂◦

] S BR
−−−→

(
{0}
{Q̂Âϕ◦v}

)
, (17)

where ε◦v are unperturbed KS orbital energies. Clearly the SBR of an operator is incomplete
because it misses the information contained in the matrix blocks that vanish in the KS-state
representation of the response density matrix, Eq. (8). It is however sufficient to calculate traces
of products of any operator with any response density matrix having the block structure of Eq.
(7). By using the SBR, the polarizability in Eq. (5) can be expressed as:

αi j(ω) = −4
(
xi, (ω − L)−1 · y j

)
(18)

where xi, y j, and L are the SBR representations of X̂i, [X̂ j, ρ̂
◦], and of the Liouvillian, respec-

tively:

X̂i
S BR
−−−→

(
{xi,v}

{0}

)
, xi (19)

[
X̂ j, ρ̂

◦
] S BR
−−−→

(
{0}
{x j,v}

)
, y j (20)

L
S BR
−−−→

(
0 D

D + 2K 0

)
, L, (21)

the xi,v orbitals are defined as
xi,v(r) = Q̂X̂iϕ

◦
v(r), (22)

and the D and K super-operators are defined as:

D · {uv(r)} =
{(

Ĥ◦ − ε◦v
)

uv(r)
}

(23)

K · {uv(r)} =

4ϕ◦v(r)
∑

v′

ˆ
κ(r, r′)ϕ◦v′ (r

′)uv′ (r′)dr′
 . (24)

Finally, the SBR of scalar products (traces of products of operators) reads:

Tr
(
Â†B̂

) S BR
−−−→

Nv∑
v=1

(〈
aq

v |b
q
v

〉
+

〈
ap

v |b
p
v

〉)
, (a, b), (25)
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where
(
{aq

v , }{a
p
v }

)
,
(
{bq

v , }{b
p
v }

)
are the SBRs of Â and B̂, respectively, and brackets 〈•|•〉 indicate

standard quantum-mechanical scalar products between one-electron orbitals. Note that, accord-
ing to these definitions, the two operators in Eq. (5), as well as their SBR in (18), are orthogonal
because the commutator of two Hermitian operators is anti-Hermitian and the trace of the product
of a Hermitian and a anti-Hermitian operator vanishes.

2.2. Dipole operator in periodic boundary conditions
In order to obtain the SBR of the dipole operator and of its commutator with the unperturbed

density matrix, Eqs. (19-20), one needs to evaluate the orbitals defined in Eq. (22). In periodic
boundary conditions (such as used in our PW implementation) the position operator X̂i is ill
defined, since it is both non-periodic and not bound from below. As a consequence it is not
possible to compute the expectation value of X̂i on Bloch states. However in the calculation of
Q̂X̂iϕ

◦
v only off-diagonal matrix elements of X̂i are required:

Q̂X̂iϕ
◦
v =

∑
c

|ϕ◦c〉〈ϕ
◦
c |X̂i|ϕ

◦
v〉, (26)

which are well defined in periodic boundary conditions [31]. Indeed, one has

〈ϕ◦c |X̂i|ϕ
◦
v〉 =

1
(ε◦c − ε◦v)

〈ϕ◦c |[Ĥ
◦, X̂i]|ϕ◦v〉, (27)

and, if the potential operator in the unperturbed Hamiltonian is purely local, then the commutator
in Eq. (27) is simply proportional to the momentum operator,

[Ĥ◦, X̂i] = −
~2

m
P̂i. (28)

When the potential acting on electrons has non-local contributions (which is the case for the vast
majority of pseudopotentials), an explicit correction due to those non-local terms must be added
to the momentum operator in Eq. (28) [33, 34].

In practice, turboTDDFT is designed so as to avoid any explicit reference to virtual eigenpairs
of the KS Hamiltonian, so that Eq. (27) cannot be used directly. However the relevant Q̂X̂iϕ

◦
v

orbitals can be obtained directly by solving a set of linear systems, as proposed in Ref. [18]
and thoroughly explained in Ref. [19]. The relevant routines used to accomplish this task are
borrowed from the phonon code in the Quantum ESPRESSO distribution [22].

3. Algorithm

According to the discussion in the previous section, any component of the polarizability tensor
can be expressed as an off-diagonal element of the resolvent of the Liouvillian (super-) operator.
Let us now see how such matrix elements can be conveniently calculated using a generalization
of the recursion method by Haydock, Heine, and Kelly [35].

3.1. Calculation of the polarizability
At first sight, it may seem that the calculation of the polarizability from the resolvent of the

Liouvillian, Eq. (18), would require the solution of a n×n linear system to invert (ω−L) for each
different value of the frequency ω, a very demanding task as the system size and/or the number of
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frequencies increase. As an expedient alternative, turboTDDFT uses a specially tailored iterative
method, called the Lanczos bi-orthogonalization algorithm (LBOA) [10, 36, 37], which allows
for the bulk of the numerical work to be done once for all the frequencies, while the linear
system is inexpensively solved in an approximate representation where the matrix to be inverted
is both tridiagonal and of much smaller size [9, 10]. By starting from the initial pair of vectors
u1 = v1 = y j, this algorithm computes two coupled Lanczos chains, generated by recursively
applying L and L> to the previous chain vectors. A pair of biorthogonal basis sets of increasing
dimension m are thus recursively constructed, such that the following factorization holds:

L · mV ≈ mV · mT + βm+1vm+1me>m, (29)
L> · mU ≈ mU · mT> + γm+1um+1me>m, (30)

mU> · mV = mI, (31)

where mV = [v1, v2, · · · vm] and mU = [u1, u2, · · · um] are n×m rectangular matrices whose columns
are the elements of the bi-orthogonal basis sets, vl and ul, generated through the LBOA (and
referred to as the right and left iterates of the Lanczos recursion), mT is the m × m tridiagonal
matrix made out of the LBOA coefficients,

mT =



0 γ2 0
β2 0 γ3

β3 0
. . .

. . .
. . . γm

0 βm 0


, (32)

mel indicates the l-th unit vector in an m-dimensional space, and mI is the m × m unit matrix. The
diagonal matrix elements in Eq. (32) vanish because of the special structure of the Liouvillian,
Eq. (21), and of the starting vector y j, Eq. (20); one also has: |βl| = |γl|. Using the factorization
of Eqs. (29), and neglecting the terms proportional to βm+1 and γm+1 therein, the molecular
polarizability given by Eq. (18) can be cast into the form:

αi j(ω) ≈ 4
(

mzi j,
(
ω − mT j

)−1
· me1

)
, (33)

= 4
(

mzi j,
mw j(ω)

)
, (34)

where mzi j = mV>j · xi is a m-dimensional column array whose components can be calculated on
the fly at every Lanczos iteration l as

zl
i j =

(
xi, vl

j

)
(35)

=

Nv∑
v=1

〈
xi,v|v

q,l
j,v

〉
, (36)

the orbitals {xi,v} are defined in Eq. (22), vq,l
j,v is the v-th upper (q-like) component of the Lanczos

vector vl
j, and the m-dimensional column array mw j(ω) is solution of the tridiagonal linear system:(

ω − mT j

)
· mw j(ω) = me1. (37)

8



In the last three equations we have appended a j suffix to the mT , v, and mV arrays to indicate that
they correspond to different Lanczos chains generated for different polarizations of the perturbing
electric field, X j.

In practice, the procedure outlined above is performed in two steps, for any given external
perturbation (such as, e.g., different polarizations j of the perturbing electric field). The first
step, which is also the most time consuming, generates the tridiagonal matrix mT and the mz
array, whose components are obtained on the fly at each Lanczos iteration using Eq. 36. The
calculation of several response functions (such as, e.g., different components of the molecular
dipole, corresponding to different rows of the polarizability tensor) implies the simultaneous
calculation of different mz arrays. In the second step, the response functions are calculated from
Eq. (34) upon solution of Eq. (37), for any different frequency one is interested in. Because of
the tridiagonal form and the small dimension of the matrix mT , the second step is computationally
much less demanding than the first one. In the turboTDDFT package each one of these two steps
is implemented in a different executable: the second one will likely be run on desktop or even
laptop computers, whereas the first may require substantial computer resources, according to the
size of the system. More details on the LBOA as applied to linearized TDDFT can be found in
Ref. [10].

3.2. Extrapolating the Lanczos recursion

The components of the mz array in Eqs. (34) decrease rather rapidly when the number of iter-
ations grows large, so that only a relatively small number of components have to be explicitly
calculated. A much larger number of β and γ coefficients is however necessary to have the so-
lution of Eq. (37) converge. In Ref. [10] it was shown that, for large iteration counts, β and
γ oscillate around two distinct values for odd and even iterates, whose average is related to the
energy width of the calculated spectrum (which in a PW representation is essentially given by
the kinetic-energy cutoff), and whose difference is related to the optical gap.

In Fig. 3.2 we display the typical behavior of the elements of the mz array and of the Lanczos β
coefficients (see Eq. 32) as functions of the Lanczos iteration count for the case of the fullerene
C60 molecule (see Sec. 4). Note that for large iteration counts the β coefficients oscillate around a
value that is roughly half the kinetic-energy cutoff (here: 30 Ry), and that the difference between
the averages for even and odd iteration counts (here: 3.17 eV) is roughly twice as large as the
calculated optical gap, which is 1.6 eV in this system (the gap in the Liouvillian spectrum is
also twice as large as the optical gap because the spectrum comprises positive and negative
frequencies).

The rapid decrease of the components of the mz array, together with the observed asymptotic
behavior of the tridiagonal coefficients suggest an effective strategy to enhance the accuracy of
the Lanczos-Liouville algorithm by extrapolating the results obtained from a relatively small
number of iterations: once m Lanczos iterations are performed and the regime is attained where
further components of the z array are negligible and the β and γ coefficients display the typical
bi-modal behavior of Fig. 3.2, a (much) larger tridiagonal system is solved, where the missing
components of z are simply set to zero, whereas the missing values of β and γ are set to the
average of the values which have been actually calculated. Using distict averages for odd and
even iteration counts may actually result in a slightly improved accuracy of the extrapolation. An
example of the efficiency of this procedure will be shown in Sec. 4.

9



Figure 1: (a): Numerical behavior of the components of the mz array (Eqs.35 and 36) for the fullerene C60 molecule; after
about 100 iterations the values become quite small. (b): Numerical behavior of the β coefficients (Eq. 32) calculated
for the same system, as functions of the iteration count n. The values tend to a constant that is approximately half the
kinetic-energy cutoff (30 Ry) and odd and even coefficients oscillate with a width (3.17 eV) that is approximately twice
the calculated optical gap (1.6 eV). The numerical detail of the simulation are the same as described in Secs. 4.1–4.3

3.3. Representation of other response functions

One of the main advantages of the Liouville-Lanczos approach to TDDFT is that it gives
direct access to the observable spectrum without having to calculate (and eventually dispose
of) individual eigenvalues of the Liouvillian (which are numerical artifacts of the calculation in
the continuum of the spectrum) and its eigenvectors (which contain way more information than
accessible in any experiment). One drawback is that it does not allow one to use the orbital-based
techniques commonly employed in quantum chemistry to identify the character of individual
spectral features [15]. Selection rules may help to some extent, but specific tools giving access to
more detailed information about individual spectral lines would be extremely useful. The many
different response functions that can be evaluated corresponding to a same perturbation using
turboTDDFT constitute a natural toolkit to analyze the features of the calculated spectra. One
such response function, which gives visual information on the photo-active regions of complex
molecular systems, is the real-space electron charge-density response to a perturbing electric
field, n′(r, ω), given in Eq. (11).

3.3.1. Charge-density response
The response charge density can in principle be calculated from Eq. (11), which would how-

ever require the preliminary calculation of the (SBR of the) response density matrix. This is
impractical for large systems, and a more direct approach can be followed instead. Using argu-
ments similar to those leading to the expression, Eq. (34), for the molecular polarizability, the
charge-density response to a homogeneous electric field polarized along the j-th direction can be
cast into the form:

n′j(r, ω) = 4
(

mz j(r), mw j(ω)
)
, (38)
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where the l-th component of the mz j(r) array reads:

mzl
j(r) =

∑
v

ϕ◦v(r)vq,l
j,v(r), (39)

and vq,l
j,v has the same meaning as in Eq. (36).

In PW calculations, real-space quantities—such as charge-density distributions—are usually
represented over 3D grids whose size is a few times larger than the number of PWs and can
contain as many as hundreds of thousands points in several challenging applications. A direct
evaluation of the response density from Eqs. (38-39) would require at each Lanczos step l and
for each grid point r the storage of zl

j(r). The huge amount of memory required would make
this task impractical in most applications. Therefore, a two-step procedure is used instead. A
first Lanczos recursion is performed to obtain the recursion coefficients βl, γl and the optical
spectrum. From the spectrum, the frequencies ω of interest can be determined and using the βl,
γl coefficients, the mw j(ω) array is calculated for those frequencies of interest, using Eq. (37).

In order to determine the response charge density at those frequencies, a second Lanczos re-
cursion chain is performed and since now the mw j(ω) are known from the previous step, the
contribution of each iteration can be summed to evaluate Eq. (38), without storing the z j coeffi-
cients of the previous iterations. In this way, the problem of excessive memory use is avoided,
albeit at the price of a second Lanczos recursion chain.

In Fig. 2 we illustrate the concept of response charges with the simple example of a benzoic
acid molecule. The response charge has been computed for the first main absorption peak (at 5.1
eV), for an electric field polarized along the long axis of the molecule.

Figure 2: Response charge of a benzoic acid molecule, for the first main absorption peak at 5.1 eV. The perturbation is
oriented along the long axis of the molecule (from left to right in this figure). The two panels show a top view and side
view, respectively.

4. Description and use of individual software components

The turboTDDFT code is designed as a module for the Quantum ESPRESSO distribution.
It resides in a self contained directory under the root directory of the Quantum ESPRESSO
tree. When compiled (see Sec. 5), the bin/ directory in the Quantum ESPRESSO root con-
tains links to the executables turbo lanczos.x (the main program) and turbo spectrum.x
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(a post-processing tool). turbo lanczos.x performs a Lanczos recursion to obtain the β, γ,
and z coefficients, Eqs. (32), (35), and (36), while turbo spectrum.x uses these coefficients to
calculate the polarizability absorption spectra.
turboTDDFT has already been successfully applied to various systems, ranging from silicon

nanoclusters [43, 44], to photovoltaic systems [45, 46, 47]. In this section we describe the various
components of the turboTDDFT software package. In the following we use the fullerene C60
molecule as an example to illustrate the different steps for the computation and analysis of an
optical absorption spectrum.

Figure 3: Structure of the C60 molecule.

4.1. Preliminary ground-state calculations

In order to compute the optical spectrum of a system, a standard ground-state DFT calculation
has to be performed first, yielding the KS orbital functions and energies for all the occupied lev-
els. The information thus obtained is then used as input point for the linear response calculation.
This ground-state computation is performed by the program pw.x, one of the key components
of the Quantum ESPRESSO package. In Appendix A a sample input file for pw.x is reported
for the case of the C60 molecule (Fig.3), using the PBE XC functional [50] and an ultrasoft (US)
pseudopotential from the Quantum ESPRESSO database of potentials [23].

Two important limitations affect the present implementation of turboTDDFT: i) only integer
occupations of KS states (the occupations keyword is set to ’fixed’, which is the default);
ii) only gamma-point (k = 0) computations using real-valued wavefunctions are allowed. The
K POINTS input card must be set to Gamma. This is not a limitation for finite or extended disor-
dered systems, whereas sampling the Brillouin zone of periodic systems would require the use
of supercells. Work on implementing general k-point sampling and complex wavefunctions is in
progress, but not included in the current release of turboTDDFT.

After successful completion of the ground-state computation, pw.x writes the KS orbitals
and energies to disk, together with all relevant information about the system, like geometry,
pseudopotentials, convergence parameters, etc. The TDDFT program turbo lanczos.x reads
all this data at start. It is therefore not necessary to re-define the system under study in the input
file of turbo lanczos.x.
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4.2. Lanczos recursions with turbo lanczos.x

The Lanczos iterations performed by turbo lanczos.x are by far the most time con-
suming step of the TDDFT computation. For the case of C60, a sample input file for
the turbo lanczos.x program is given in Appendix A. A list of all input variables of
turbo lanczos.x is given in Table B.1 of Appendix B. The (integer) input variable itermax
set up the number of Lanczos iterations and so determines the dimension of the tridiagonal matrix
Eq. (32); in general one can only check whether the number of iterations is sufficient to achieve
an adequately converged representation at the post-processing stage, however, it is always pos-
sible to add more iterations to the calculation through using restart=.true. and increasing
itermax. The strings defined in the input variables prefix and outdir identifies the system
data on disk and must correspond to files created by pw.x, easiest way to achieve this is to use
the same settings in both of the programs.

The input variable ipol defines the direction of the polarization of the light (ipol=1,2,3 for
the the cartesian coordinates x, y, and z). For each direction of the polarization, one full Lanczos
recursion chain needs to be computed. If the input variable ipol is set to the value 4, then
turbo lanczos.x will automatically perform three recursion chains, one for each direction;
from this calculation it is possible to obtain the full polarizability tensor and not only the diagonal
components.

After execution of turbo lanczos.x, the computed β and γ coefficients are stored in the
file prefix.beta gamma z.p, where p=1-3 for the three cartesian directions. These portable
ASCII text files are the only files required by turbo spectrum.x in the post-processing stage.

In Appendix A an example is provided on how to use turbo lanczos.x to compute the
charge density response. It is necessary to set charge response=1 and in this case the card
lr post becomes mandatory. The variable omeg defines the value of the transition energy ~ω (in
Ry) for which the density response is to be calculated. By setting the value of plot type=1,2,3

a density output file can be obtained in xyzd, Xcrysden [53], or Gaussian cube formats, respec-
tively.

4.3. Obtaining the optical spectrum with turbo spectrum.x

From the computed recursion coefficients, the absorption spectrum can be obtained using
Eq. (33). This task is performed by the program turbo spectrum.x. The input variables for
this program are documented in Table B.2 of Appendix B, and a sample input file for the case
of the C60 molecule is given in Appendix A.

The absorption spectrum is computed by solving the linear system of Eq. (37). In order to
smooth out the spectrum near the eigenvalues of the tridiagonal matrix, this system is solved for
complex frequencies, ω + iε. Setting ε to a nonzero value (through the input variable epsil)
amounts to convoluting the theoretical spectrum with a Lorentzian, or, alternatively, to broad-
ening each individual spectral line. In the continuous region of the spectrum, where individual
spectral lines are artifacts of the truncation of the Lanczos chain, the results thus obtained are
independent on ε, whenever this parameter is smaller than the average distance between consec-
utive pseudo-discrete lines.

The convergence of the calculated spectrum in the desired energy range can be easily checked
by varying the number of recursion coefficients used for the spectrum. This is set by the input
variable itermax. It can take values up to the number of iterations which have been effectively
performed previously using turbo lanczos.x. If it turns out at this stage that not enough
coefficients have been calculated before, it is possible to simply restart the turbo lanczos.x
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code and to compute additional coefficients. This is possible without any loss of computer time,
i.e. the code can be restarted from the last iteration.

As discussed in section 3.2, the speed of convergence of the spectrum with respect to the
number of Lanczos iterations can be drastically increased using extrapolated coefficients. Such
extrapolations are used if the input variable terminator is set to osc or constant. In this case,
the variable itermax is set to a high value, e.g. 10,000, while the variable itermax0 determines
how many exactly computed coefficients are used. Extrapolated values for β and γ are used from
itermax0+1 to itermax.

The post-processing code will generate a file prefix.plot. If in the previous
turbo lanczos.x calculation we have set up ipol=1,2,3, the prefix.plot will contain in
the first column chi p p (p=ipol), in the second the value of ω, and in third and fourth columns
the values of the real and imaginary part of the polarizability, Eq. (1), respectively. If in the
previous turbo lanczos.x calculation we have set up ipol=4, the post-processing code will
compute the full polarizability tensor and the absorption coefficient. In the file prefix.plot

the polarizability tensor components can be found in the lines starting with chi p1 p2, where
p1 and p2 can be 1,2,3, depending on the polarization direction. The absorption coefficient,
computed as the product of the average of the trace of the polarizability with the frequency ω,
can be found in the lines starting with alpha.

Figure 4: Convergence the absorption spectrum of fullerene C60 with respect to the number of Lanczos steps without
extrapolation. An ultrasoft pseudopotential was used and a kinetic-energy cutoff of 30 Ry to expand the wavefunctions.
The comparison between the spectra at 2500 and 3000 iterations shows that 2500 iterations ensure a reasonably good
convergence in a wide energy range. As highlighted in the inset, the low energy part of the spectrum converges faster
and in this case 1500 iterations are enough for an accurate result.

In Fig. 4.3 we display the convergence of the spectrum of C60 as a function of the number of
Lanczos iterations. The technical details of this calculation are given in Appendix A. For this
example 2500 iterations ensure a good convergence in a wide energy range, while in the low
energy range (see inset) a smaller amount of Lanczos steps (about 1500) is enough to obtain ac-
curate results. In Fig. 5 the extrapolation scheme of Sec. 3.2 is used to improve the convergence.
By extrapolating the Lanczos chain, as few as 1200 iterations are enough to obtain a converged
spectrum in a wide energy range.

The dependence of the Lanczos coefficients on the PW kinetic-energy cutoff illustrated in Sec.
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Figure 5: Improvement in the convergence of the absorption spectrum of fullerene C60 using the extrapolation technique
described in Sec. 3.2. The spectrum computed at 1200 iterations still shows wide oscillations if compared to the con-
verged result at 3000 iterations. If after 1200 iterations the Lanczos coefficients are extrapolated to a sufficiently large
number (10, 000 in this case), the computed spectrum becomes almost indistinguishable from the converged result.

3.2 implies that simulations utilizing larger cutoffs usually require a larger number of iterations
to converge. To illustrate this property an additional calculation using a norm-conserving (NC)
pseudopotential, which requires a higher kinetic-energy cutoff of 70 Ry, has been performed.
This example will also serve the purpose of comparing the performance of different functionals in
TDDFT, namely the local density approximation PZ functional [51] and the generalized gradient
approximation PBE [50] functional used in the previous example. As illustrated in Fig. 6(a), after
3000 iterations the spectrum still exhibits wide oscillations, while in Fig. 4.3 the same number of
iterations was providing converged results. Also in this case the extrapolation scheme of Sec. 3.2
can be used to sensibly reduce the computational workload. In Fig. 6(b) the spectra obtained
using different pseudopotentials (US and NC) and functionals (PBE and PZ) are compared. The
agreement is excellent in the low-energy part of the spectrum. At higher energy the structure and
intensity become slightly different. This is only a minor issue since, as illustrated in Ref. [11],
the fine structure (but not the overall shape) of the continuum is a spurious effect of the finite
supercell size.

5. Installation instructions

turboTDDFT is distributed as a source code, and needs compiling for the target environment.
The installation procedure is tightly bound with the installation of Quantum ESPRESSO, and it
is not any different than compiling any other post-processing code contained therein. Quantum
ESPRESSO and turboTDDFT makes use of the GNU autotools. After extracting in the root
directory of the Quantum ESPRESSO tree, issuing the two UNIX commands

./configure

make tddfpt

will create the turboTDDFT executables in the bin/ folder of the Quantum ESPRESSO
15



Figure 6: (a): Convergence properties of the spectrum of fullerene using norm-conserving pseudopotentials. The larger
cutoff (70 Ry) used in this calculation requires a larger number of iterations compared to the ultrasoft pseudopotential
calculation presented in Fig. 4.3. Indeed, after 3000 iterations the spectrum still shows very large oscillations and only
using the Lanczos extrapolation scheme it is possible to converge the results. (b): Comparison of the spectrum of
fullerene obtained using the PBE functional and ultrasoft pseudopotentials (PBE-US) with the spectrum obtained using
the PZ functional and norm-conserving pseudopotentials (PZ-NC). Despite the different computational details the two
spectra are in quite good agreement.

tree. Further detailed installation instructions can be found in the documentation that comes
with the Quantum ESPRESSO distribution.

6. Comparison with time propagation and sum rules

We have also compared the absorption spectrum of C60, calculated using turboTDDFT with
the spectrum obtained from an explicit time propagation of the KS equations [11, 48, 49]. For
the time propagation we employed the same cell, basis set, functional, and pseudopotential given
in Appendix A. Real-time propagation are performed using a fourth-order polynomial expansion
of the propagator exp (−iH(t)∆t/~), together with the so-called enforced time-reversal symmetry
(ETRS) method [52]. A time step ∆t of 9.67 · 10−19 s is employed, for a total simulation time
of 13.4 fs. The absorption spectrum thus obtained agrees well with the spectrum obtained by
applying the Lanczos recursions, as shown in Fig. 6. The good agreement of the two spectra,
computed in one case using linear-response algorithms and in the other case a general time
propagation, further validates our implementation of TDDFPT.

Optical susceptibilities satisfy many sum rules, the most fundamental of which is probably the
Thomas-Reiche-Kuhn [27, 28, 29] (or f-sum) rule, which relates the integral of the absorption
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coefficient of a molecular system to the number of electrons contained in it:

f = Im
∑

j

ˆ ∞
0

α j j(ω)ωdω (40)

=
3
2

Neπ, (41)

Ne being the number of electrons (of valence electrons, in a pseudopotential calculation) in the
system. The Liouville-Lanczos approach to TDDFT can be demonstrated to satisfy the f-sum
rule exactly, for any number of Lanczos iterations [54]. This is only true when utilizing local
pseudopotentials. When nonlocal NC or US pseudo-potentials are used, violations of the f-sum
rule are to be expected. In the two calculations for C60 presented above, the f-sum violation is
extremely small when using NC pseudopotentials (∆ f / f ≈ 0.007), whereas it is one order of
magnitude larger (∆ f / f ≈ 0.078), when utilizing US pseudopotentials.
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Figure 7: Comparison of the absorption spectrum of fullerene C60 computed with the Liouville-Lanczos method de-
scribed in this work and with a time propagation algorithm. Both calculations are performed starting from the same
ground state.

Let us finally comment on typical CPU times in the example of the C60 molecule. On
an IBM SP6 machine, employing 32 processors, the time propagation (13900 steps) took in
total 48.7 hours (0.21 minutes per time step). On the same machine and for the same sys-
tem, turboTDDFTemployed 1.8 hours (0.044 minutes per Lanczos step, for a total of 2,500
steps). Even though the precise CPU requirements for time propagations depend heavily on
the implementation and employed basis sets, this comparison shows clearly how performant
turboTDDFTcan be.

7. Conclusions

In this work we have presented the turboTDDFT code, that implements the Liouville-Lanczos
approach to time-dependent density-functional perturbation theory. A detailed description of the
use of the code has been provided considering the example of fullerene C60.
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The turboTDDFT implementation has a numerical scalability comparable to ground state DFT
calculations and does not require the explicit calculation of any empty electronic state. Further-
more, the use of the Lanczos algorithm allows computing of optical spectra in a very wide energy
range and easy verification of the f-sum rule.

In the current implementation hybrid functionals are not available and the calculations are
restricted to a single k point (gamma). These features will be included in future releases.

In the same spirit as the Quantum ESPRESSO project, the turboTDDFT provides physicists
worldwide a well commented and open source framework for implementing their ideas. It is
in our best hopes that turboTDDFT can benefit from the already well established user commu-
nity of Quantum ESPRESSO for incorporating new ideas and keep growing in the future. The
turboTDDFT is hosted in a community accessible CVS repository and hence, apart from releases
in Quantum ESPRESSO, those who are willing to test the latest experimental implementations
are welcome to do so and contribute with their feedback.
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Appendix A. SAMPLE INPUT FILES

Input Example 1 Input sample for pw.x
&control
calculation = ’scf’
restart mode = ’from scratch’,
pseudo dir = ’./pseudo’,
outdir = ’./out’,
prefix = ’C60’
/

&system
ibrav = 1,
celldm(1) = 35.0,
nat = 60,
ntyp = 1,
ecutwfc = 30.0,
ecutrho = 180.0,
/

&electrons
/

ATOMIC SPECIES
C 12.01 C.pbe-rrkjus.UPF
ATOMIC POSITIONS {angstrom}
C -0.692117664 0.000074421 3.443766031
...
C 3.000992503 -1.410428258 1.162930805
K POINTS {gamma}

Input Example 2 Input sample for turbo lanczos.x first stage
&lr input
prefix=’C60’,
outdir=’./out’,
restart step=250,
/

&lr control
itermax=3000,
ipol=4
/
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Input Example 3 Input sample for optional turbo lanczos.x second pass
&lr input
prefix=’C60’,
outdir=’./out’,
restart step=250,
restart=.false.
/

&lr control
itermax=3000,
ipol=1
charge response=1
/

&lr post
omeg=0.4017
epsil=0.001
w T npol=3
plot type=3
/

Input Example 4 Input sample for turbo spectrum.x

&lr input
prefix=’C60’,
outdir=’./out’,
itermax=10000
itermax0=1500
terminator=’osc’
epsil=0.02
end=4.0
increment=0.001
start=0.0
ipol=4
/

20



Appendix B. INPUT VARIABLES

Card Variable name Default
Value Description

lr
in

pu
t

prefix ’pwscf’ Sets the prefix for generated and read files. The files generated by the ground
state pw.x run should have this same prefix.

outdir ’./’ The directory that contains the run critical files, which include the files generated
by ground state pw.x run..

wfcdir unset The directory where the scratch files will be written and read. Restart related
files are always written to outdir.

restart .false.
When set to .true., turbo lanczos.x will attempt to restart from a previous
interrupted calculation. (see restart step variable).

restart step itermax
The code writes restart files every restart step iterations. Restart files are
automatically written at the end of itermax Lanczos steps.

lr verbosity 1 This integer variable controls the amount of information written in standard out-
put.

lr
co

nt
ro

l

itermax 500 Number of iterations to be performed.

ipol 1

An integer variable that determines which element of the dynamical polarizabil-
ity will be computed: 1 → αxx(ω), 2 → αyy(ω), and 3 → αzz(ω). When set
to 4, three Lanczos chains are sequentially performed and the full polarizability
tensor and the absorption coefficient are computed.

nipol
1 if ipol < 4;
3 if ipol=4

Determines the number of zeta coefficients to be calculated for a given polariza-
tion direction.

ltammd .false.
When set to .true. the Tamm-Dancoff approximation is used in constructing the
Liouvillian.

no hxc .false.
When set to .true. the change in the internal field (Hartree and exchange-
correlation) is ignored in the calculation, resulting in an independent electron
approximation.

charge response 0
When set to 1, the code computes the response of the charge density and
writes it into a file format determined by the variable plot type. Setting
charge response to 1 makes the presence of the card lr post mandatory.

lr
po

st

omeg 0.0 The response of the charge density is calculated for this transition energy (in
Rydberg units)

epsil 0.0 The broadening/damping term (in Rydberg units).

beta gamma z prefix ’pwscf’
The prefix of the file where the beta gamma zeta coefficients from the
first calculation can be set manually using this parameter. The file
outdir/beta gamma z prefix.beta gamma z.x (where x=1-3) must exist.

w T npol 1 Number of polarization directions considered in the previous calculation. It must
be set to 3 if in the previous calculation ipol=4, it must be set to 1 otherwise.

plot type 1

An integer variable that determines the format of the file containing the charge
density response. 1: A file containing the x y z grid coordinates and the corre-
sponding value of the density is produced 2: The density response is written in
Xcrysden format 3: The density response is written in the gaussian cube format

Table B.1: Input variables for turbo lanczos.x
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Card Variable name Default
Value Description

lr
in

pu
t

prefix ’pwscf’ Prefix of the files generated by the previous
turbo lanczos.x run.

outdir ’./’ The directory where the output files produced by the previous
turbo lanczos.x run are stored.

itermax0 500 Number of Lanczos coefficients to be read from the file.

itermax 500

The total number of Lanczos coefficients that will be consid-
ered in the calculation of the polarizability/absorption coeffi-
cient. If itermax >itermax0, the Lanczos coefficients in
between itermax0+1 and itermax will be extrapolated.

terminator ’no’

Sets the extrapolation scheme.
’osc’= biconstant extrapolation;
’constant’=constant extrapolation;
’no’=no extrapolation.

epsil 0.02 The broadening/damping term (in Rydberg units).

units 0 Unit system used. 0: Rydbergs; 1: Electron volts 2: Nanome-
ters/Electron volts

start 0.0 The polarizability and the absorption coefficient are computed
starting from this value. In units set by the units variable.

end 2.5 The polarizability and the absorption coefficient are computed
up to this value. In units set by the units variable.

increment 0.001 Incremental step used to define the mesh between start and
end . In units set by the units variable.

ipol 1

An integer variable that determines which element of the dy-
namical polarizability will be computed: 1 → αxx(ω), 2 →
αyy(ω), and 3 → αzz(ω). When set to 4 the polarizability ten-
sor and oscillator strength function are computed.

verbosity 0 This integer variable Controls the output verbosity.

Table B.2: Input variables for turbo spectrum.x

References

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997, (1984).
[4] Time Dependent Density Functional Theory, edited by M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K.

Burke, E. K. U. Gross (Springer-Verlag, Berlin and Heidelberg, 2006).
[5] A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
[6] D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109 (2010).
[7] P. Ghosh, R. Gebauer, J. Chem. Phys. 132, 104102 (2010).
[8] A. Izmayalov, G.E. Scuseria, J. Chem. Phys. 129, 034101 (2008).
[9] B. Walker, A. M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev. Lett. 96, 113001 (2006).

[10] D. Rocca, R. Gebauer Y. Saad, and S. Baroni, J. Chem. Phys. 128, 154105 (2008).
[11] B. Walker and R. Gebauer, J. Chem. Phys. 127, 164106 (2007).
[12] D. Rocca, Time-dependent density functional-perturbatio theory: new algorithms with applications to molecular

spectra, SISSA PhD thesis, http://www.sissa.it/cm/thesis/2007/Dario Rocca PhD Thesis.pdf

[13] E.K.U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
22



[14] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
[15] M. E. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific,

Singapore, 1995), p. 155.
[16] A. Castro, H. Appel, Micael Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, and

A. Rubio, Phys. Stat. Sol. B 243 2465 (2006).
[17] M.A.L. Marques, A. Castro, G.F. Bertsch, and A. Rubio, Comput. Phys. Commun. 151 60 (2003).
[18] S. Baroni, P. Giannozzi, and A. Testa Phys. Rev. Lett. 58, 1861 (1987).
[19] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
[20] http://www.gnu.org/licenses/gpl.html

[21] S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, and A. Pasquarello, and S. Baroni, Z. Kristallog. 220,
574 (2005).

[22] P. Giannozzi et al., J. Phys.: Condens. Matter 21 395502 (2009).
[23] http://www.quantum-espresso.org .
[24] F. Bassani and M. Altarelli, Interaction of radiation with condensed matter, in Handbook of Synchroton Radiation

(North Holland, Amsterdam, 1983), pp. 465-597.
[25] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
[26] R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
[27] W. Thomas, Naturwissenschaften 13, 627 (1925).
[28] W. Kuhn, Z. Phys. 33, 408 (1925).
[29] F. Reiche and W. Thomas, Z. Phys. 34, 510 (1925).
[30] C.M.M. Nex, J. Phys. A 11, 653 (1978).
[31] A. Baldereschi and E. Tosati, Phys. Rev. B 17, 4710 (1978).
[32] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
[33] S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).
[34] J. Tobik and A. Dal Corso, J. Chem. Phys. 120, 9934 (2004).
[35] D. W. Bullet, R. Haydock, V. Heine, and M. Kelly, Solid State Physics (Academic, New York, 1980), Vol. 35.
[36] Y. Saad, Siam J. Numer. Anal. 19 485 (1982).
[37] S. Baroni, R. Gebauer, O. B. Malcioglu, et al. J. Phys. Cond. Mat. 22, 074204 (2010).
[38] P. Giannozzi and C. Cavazzoni, Nuovo Cimento C 32, 49 (2009).
[39] J. Hutter and A. Curioni, ChemPhysChem 6, 1788 (2005).
[40] L. S. Blackford et al, Proc. of the 1996 ACM/IEEE Conf. on Supercomput. (Washington, DC: IEEE Computer

Society) p 5 (1996).
[41] Using OpenMP: Portable Shared Memory Parallel Programming (Cambridge, MIT Press, Cambridge MA, 2007).
[42] NVIDIA CUDA is a general purpose gpu computing platform. http://www.nvidia.com/object/cuda home new.html

[43] B.G. Walker, S. C. Hendy, R. Gebauer, R. D. Tilley, Eur. Phys. J. B 66, 7 (2008).
[44] A. Gali, M. Vörös, D. Rocca, G. T. Zimanyi and G. Galli, Nano Lett. 9, 3780 (2009).
[45] D. Rocca, R. Gebauer, F. De Angelis, M. K. Nazeeruddin, and S. Baroni, Chem. Phys. Lett. 475, 49 (2009).
[46] L. Huang, D. Rocca, S. Baroni, K. E. Gubbins, and M. Buongiorno Nardelli, J. Chem. Phys. 130, 194701 (2009).
[47] F. De Angelis, S. Fantacci, and R. Gebauer, J. Phys. Chem. Lett. 2, 813 (2011).
[48] R. Martin Electronic Structure: Basic Theory and Practical Methods, Chapter 20.4, (Cambridge University Press,

Cambridge UK, 2004).
[49] K. Yabana and G.F. Bertsch, Int. J. Quant. Chem. 75, 55 (1999).
[50] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
[51] J. P. Perdew and A. Zunger, Phys. Rev. Lett. 23, 5048 (1981)
[52] A. Castro, M. A. L. Marques and A. Rubio, J. Chem. Phys. 121, 3425 (2004).
[53] A. Kokalj, Comp. Mater. Sci. 28, 155 (2003). Code available from http://www.xcrysden.org/

[54] S. Baroni and R. Gebauer, unpublished.

23


