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1 Introduction

Welcome to the Elk Code! Elk is an all-electron full-potential linearised augmented-plane-
wave (FP-LAPW) code for determining the properties of crystalline solids. It was developed
originally at the Karl-Franzens-Universitit Graz as part of the EXCITING EU Research and
Training Network projectﬂ The guiding philosophy during the implementation of the code
was to keep it as simple as possible for both users and developers without compromising on
its capabilities. All the routines are released under either the GNU General Public License
(GPL) or the GNU Lesser General Public License (LGPL) in the hope that they may inspire
other scientists to implement new developments in the field of density functional theory and
beyond.

2 Acknowledgments

Lots of people contributed to the Elk code with ideas, checking and testing, writing code or
documentation and general encouragement. They include Claudia Ambrosch-Draxl, Clas
Persson, Christian Brouder, Rickard Armiento, Andrew Chizmeshya, Per Anderson, Igor
Nekrasov, Sushil Auluck, Frank Wagner, Fateh Kalarasse, Jiirgen Spitaler, Stefano Pit-
talis, Nektarios Lathiotakis, Tobias Burnus, Stephan Sagmeister, Christian Meisenbichler,
Sébastien Lebegue, Yigang Zhang, Fritz Kérmann, Alexey Baranov, Anton Kozhevnikov,
Shigeru Suehara, Frank Essenberger, Antonio Sanna, Tyrel McQueen, Tim Baldsiefen,
Marty Blaber, Anton Filanovich, Torbjorn Bjérkman, Martin Stankovski, Jerzy Goraus,
Markus Meinert, Daniel Rohr, Vladimir Nazarov, Kevin Krieger, Pink Floyd, Arkardy
Davydov, Florian Eich, Aldo Romero Castro, Koichi Kitahara, James Glasbrenner, Konrad
Bussmann, [gor Mazin and Matthieu Verstraete. Special mention of David Singh’s very use-
ful book on the LAPW methocﬂ must also be made. Finally we would like to acknowledge
the generous support of Karl-Franzens-Universitat Graz, as well as the EU Marie-Curie
Research Training Networks initiative.

Kay Dewhurst
Sangeeta Sharma
Lars Nordstrom
Francesco Cricchio
Fredrik Bultmark
Oscar Granés
Hardy Gross

Halle and Uppsala, May 2014

'EXCITING code developed under the Research and Training Network EXCITING funded by the EU,
contract No. HPRN-CT-2002-00317

2D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academic Publishers, Boston,
1994).

11



3 Units

Unless explicitly stated otherwise, Elk uses atomic units. In this system h = 1, the electron
mass m = 1, the Bohr radius ap = 1 and the electron charge e = 1 (note that the electron
charge is positive, so that the atomic numbers Z are negative). Thus, the atomic unit of
length is 0.52917721092(17) A, and the atomic unit of energy is the Hartree which equals
27.21138505(60) eV. The unit of the external magnetic fields is defined such that one unit
of magnetic field in elk.in equals 1715.2554659 Tesla.

4 Compiling and running Elk

4.1 Compiling the code

Unpack the code from the archive file. Run the command

setup

in the elk directory and select the appropriate system and compiler. We highly recommend
that you edit the file make.inc and tune the compiler options for your computer system.
In particular, use of machine-optimised BLAS/LAPACK libraries can result in significant
increase in performance, but make sure they are of version 3.x. Following this, run

make

This will hopefully compile the entire code and all the libraries into one executable, elk,
located in the elk/src directory. It will also compile two useful auxiliary programs, namely
spacegroup for producing crystal geometries from spacegroup data and eos for fitting
equations of state to energy-volume data. If you want to compile everything all over again,
then run make clean from the elk directory, followed by make.

4.1.1 Parallelism in Elk

Three forms of parallelism are implemented in Elk, and all can be used in combination with
each other, with efficiency depending on the particular task, crystal structure and computer
system. You may need to contact your system administrator for assistance with running
Elk in parallel.

1. OpenMP works for symmetric multiprocessors, i.e. computers that have many cores
with the same unified memory accessible to each. It is enabled by setting the appro-
priate command-line options (e.g. —openmp for the Intel compiler) before compiling,
and also at runtime by the environment variable

export OMP_NUM_THREADS=x

where x is the number of cores available on a particular node. Elk also makes use of
nested OpenMP parallelism, meaning that there are nested parallel loops in parts of
the code, the iterative diagonaliser being one such example. These nested loops can
be run in parallel by setting
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export OMP_NESTED=true

Be aware that using this option can actually degrade performance if too many threads
are created. To avoid such oversubscription, you may need to adjust related OpenMP
VarkﬂﬂesinchldhugDMP,THREAD,LIMIT,UMP,MAX,ACTIVE,LEVELSzuniOMPADYNAMIC(there
may also be additional compiler-specific environment variables that can be set). Fi-
nally, some vendor-supplied BLAS/LAPACK libraries use OpenMP internally, for
example MKL from Intel and ACML from AMD; refer to their documentation for
usage.

2. The message passing interface (MPI) is particularly suitable for running Elk across
multiple nodes of a cluster, with scaling to hundreds of processors possible. To en-
able MPI, comment out the lines indicated in elk/make.inc. Then run make clean
followed by make. If y is the number of nodes and z is the number of cores per node,
then at runtime envoke

mpirun -np z ./elk

where z = zy is the total number of cores available on the machine. Highest effi-
ciency is obtained by using hybrid parallelism with OpenMP on each node and MPI
across nodes. This can be done by compiling the code using the MPI Fortran com-
piler in combination with the OpenMP command-line option. At runtime set export
OMP_NUM_THREADS=x and start the MPI run with one process per node as follows

mpirun -pernode -np y ./elk

The number of MPI processes is reported in the file INFO.0UT which serves as a check
that MPI is running correctly. Note that version 2 of the MPI libraries is required to
run Elk.

3. Phonon calculations use a simple form of parallelism by just examining the run direc-
tory for dynamical matrix files. These files are of the form

DYN_Qqgqqgq_qqqq-9qqq_Sss_Aaa_Pp.0UT

and contain a single row of a particular dynamical matrix. Elk simply finds which DYN
files do not exist, chooses one and runs it. This way many independent runs of Elk
can be started in the same directory on a networked file system (NFS), and will run
until all the dynamical matrices files are completed. Should a particular run crash,
then delete the associated empty DYN file and rerun Elk.

4.2 Linking with the Libxc functional library

Libxc is the ETSF library of exchange-correlation functionals. Elk can use the complete set
of LDA and GGA functionals available in Libxc as well as the potential-only metaGGA’s.
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In order to enable this, first download and compile Libxc version 2.2.x. This should have
produced the files 1ibxc.a and 1ibxcf90.a. Copy these files to the elk/src directory and
then uncomment the lines indicated for Libxc in the file elk/make.inc. Once this is done,
run make clean followed by make. To select a particular functional of Libxc, use the block

xctype
100 nx nc

where nx and nc are, respectively, the numbers of the exchange and correlation functionals
in the Libxc library. See the file elk/src/libxc_funcs.f90 for a list of the functionals and
their associated numbers.

4.3 Running the code

As a rule, all input files for the code are in lower case and end with the extension .in.
All output files are uppercase and have the extension .0UT. For most cases, the user will
only need to modify the file elk.in. In this file input parameters are arranged in blocks.
Each block consists of a block name on one line and the block variables on subsequent lines.
Almost all blocks are optional: the code uses reasonable default values in cases where they
are absent. Blocks can appear in any order, if a block is repeated then the second instance
is used. Comment lines can be included in the input file and begin with the ! character.

4.3.1 Species files

The only other input files are those describing the atomic species which go into the crystal.
These files are found in the species directory and are named with the element symbol and
the extension .in, for example Sb.in. They contain parameters like the atomic charge,
mass, muffin-tin radius, occupied atomic states and the type of linearisation required. Here
as an example is the copper species file Cu.in:

’Cu’ : spsymb

’copper’ : spname
-29.0000 : spzn

115837.2716 : spmass

0.371391E-06 2.0000 34 .8965 500 : sprmin, rmt, sprmax, nrmt
10 : spnst

1 0 1 2.00000 T : spn, spl, spk, spocc, spcore
2 0 1 2.00000 T

2 1 1 2.00000 T

2 1 2 4.00000 T

3 0 1 2.00000 T

3 1 1 2.00000 F

3 1 2 4.00000 F

3 2 2 4.00000 F

3 2 3 6.00000 F

4 0 1 1.00000 F

1 : apword

0.1500 O F : apwe0O, apwdm, apwve

1 : nlx
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2 : 1x, apword

2

0.1500 O T : apwe0O, apwdm, apwve
0.1500 1 T

4 : nlorb

0 2 : lorbl, lorbord
0.1500 0 F : lorbeO, lorbdm, lorbve
0.1500 1 F

1 2

0.1500 0 F

0.1500 1 F

2 2

0.1500 0 F

0.1500 1 F

1 3

0.1500 0 F

0.1500 1 F
-2.8652 0 T

The input parameters are defined as follows:

spsymb
The symbol of the element.

Spname
The name of the element.

spzn
Nuclear charge: should be negative since the electron charge is taken to be postive in the
code; it can also be fractional for purposes of doping.

spmass
Nuclear mass in atomic units.

sprmin, rmt, sprmax, nrmt
Respectively, the minimum radius on logarithmic radial mesh; muffin-tin radius; effective
infinity for atomic radial mesh; and number of radial mesh points to muffin-tin radius.

spnst
Number of atomic states.

spn, spl, spk, spocc, spcore

Respectively, the principal quantum number of the radial Dirac equation; quantum number
l; quantum number k (I or I + 1); occupancy of atomic state (can be fractional); .T. if
state is in the core and therefore treated with the Dirac equation in the spherical part of
the muffin-tin Kohn-Sham potential.

apword

Default APW function order, i.e. the number of radial functions and therefore the order of
the radial derivative matching at the muffin-tin surface.

apweO, apwdm, apwve

Respectively, the default APW linearisation energy; the order of the energy derivative of
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the APW radial function 0™u(r)/OE™; and .T. if the linearisation energy is allowed to
vary.

nlx

The number of exceptions to the default APW configuration. These should be listed on sub-
sequent lines for particular angular momenta. In this example, the fixed energy APW with
angular momentum d (1x = 2) is replaced with a LAPW, which has variable linearisation
energy.

nlorb
Number of local orbitals.

lorbl, lorbord
Respectively, the angular momentum [ of the local-orbital; and the order of the radial
derivative which goes to zero at the muffin-tin surface.

lorbe0, lorbdm, lorbve
Respectively, the default local-orbital linearisation energy; the order of the energy derivative
of the local-orbital radial function; and .T. if the linearisation energy is allowed to vary.

4.3.2 Examples

The best way to learn to use Elk is to run the examples included with the package. These
can be found in the examples directory and use many of the code’s capabilities. The
following section which describes all the input parameters will be of invaluable assistance.

5 Input blocks

This section lists all the input blocks available. It is arranged with the name of the block
followed by a table which lists each parameter name, what the parameter does, its type and
default value. A horizontal line in the table indicates a new line in elk.in. Below the table
is a brief overview of the block’s function.

5.1 atoms

nspecies number of species integer | 0

spfname (i) species filename for species ¢ string | -

natoms (i) number of atoms for species @ integer | -

atposl(j,i) | atomic position in lattice coordinates for atom j real(3) | -

bfemt(j,1i) | muffin-tin external magnetic field in Cartesian coordinates | real(3) | -
for atom j

Defines the atomic species as well as their positions in the unit cell and the external magnetic
field applied throughout the muffin-tin. These fields are used to break spin symmetry and
should be considered infinitesimal as they do not contribute directly to the total energy.
Collinear calculations are more efficient if the field is applied in the z-direction. One could,
for example, set up an anti-ferromagnetic crystal by pointing the field on one atom in the
positive z-direction and in the opposite direction on another atom. If molecule is .true.
then the atomic positions are assumed to be in Cartesian coordinates. See also sppath,
bfieldc and molecule.
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5.2 autokpt

autokpt | .true. if the k-point set is to be determined automati- | logical | .false.
cally

See radkpt for details.

5.3 autolinengy

autolinengy | .true. if the fixed linearisation energies are to be | logical | .false.
determined automatically

See dlefe for details.

5.4 autoswidth

autoswidth | .true. if the smearing parameter swidth should be | logical | .false.
determined automatically

Calculates the smearing width from the k-point density, Vgz/nk; the valence band width,
W; and an effective mass parameter, m*; according to

V2w <3VBZ)1/3

m*

7= 41 ng

The variable mstar then replaces swidth as the control parameter of the smearing width.
A large value of m* gives a narrower smearing function. Since swidth is adjusted accord-
ing to the fineness of the k-mesh, the smearing parameter can then be eliminated. It is
not recommended that autoswidth be used in conjunction with the Fermi-Dirac smearing
function, since the electronic temperature will then be a function of the k-point mesh. See
T. Bjorkman and O. Granés, Int. J. Quant. Chem. DOI: 10.1002/qua.22476 (2010) for
details. See also stype and swidth.

5.5 avec
avec(1) | first lattice vector real(3) | (1.0,0.0,0.0)
avec(2) | second lattice vector real(3) | (0.0,1.0,0.0)
avec(3) | third lattice vector real(3) | (0.0,0.0,1.0)

Lattice vectors of the crystal in atomic units (Bohr).

5.6 Dbetal

] betal ‘ adaptive mixing parameter ‘ real ‘ 0.05 ‘

This determines how much of the potential from the previous self-consistent loop is mixed
with the potential from the current loop. It should be made smaller if the calculation is
unstable. See betamax and also the routine mixadapt.

5.7 Dbetamax

’ betamax ‘ maximum adaptive mixing parameter ‘ real ‘ 0.5 ‘

Maximum allowed mixing parameter used in routine mixadapt.
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5.8 Dbfieldc

bfieldc | global external magnetic field in Cartesian coordi- | real(3) | (0.0,0.0,0.0)
nates

This is a constant magnetic field applied throughout the entire unit cell and enters the
second-variational Hamiltonian as

Je -

“— 0 - Bext,

4e

where g. is the electron g-factor. This field is normally used to break spin symmetry for
spin-polarised calculations and considered to be infinitesimal with no direct contribution to
the total energy. In cases where the magnetic field is finite (for example when computing
magnetic response) the external B-field energy reported in INFO.0UT should be added to the
total by hand. This field is applied throughout the entire unit cell. To apply magnetic fields
in particular muffin-tins use the bfcmt vectors in the atoms block. Collinear calculations
are more efficient if the field is applied in the z-direction.

5.9 broydpm

’ broydpm ‘ Broyden mixing parameters a and wq ‘ real ‘ (0.25,0.01) ‘

See mixtype and mixsdb.

5.10 c_tb09

c_tb09 | Tran-Blaha constant c ‘ real ‘ - ‘

Sets the constant ¢ in the Tran-Blaha ’09 functional. Normally this is calculated from the
density, but there may be situations where this needs to be adjusted by hand. See Phys.
Rev. Lett. 102, 226401 (2009).

5.11 chgexs

’ chgexs ‘ excess electronic charge ‘ real ‘ 0.0 ‘

This controls the amount of charge in the unit cell beyond that required to maintain neu-
trality. It can be set positive or negative depending on whether electron or hole doping is
required.

5.12 cmagz

’ cmagz ‘ .true. if z-axis collinear magnetism is to be enforced logical | .false.

This variable can be set to .true. in cases where the magnetism is predominantly collinear
in the z-direction, for example a ferromagnet with spin-orbit coupling. This will make the
calculation considerably faster at the slight expense of precision.

5.13 deltaem

deltaem | the size of the k-vector displacement used when calculating nu- | real | 0.025
merical derivatives for the effective mass tensor

See ndspem and vklem.
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5.14 deltaph

deltaph | size of the atomic displacement used for calculating dynamical | real | 0.02
matrices

Phonon calculations are performed by constructing a supercell corresponding to a particular
g-vector and making a small periodic displacement of the atoms. The magnitude of this
displacement is given by deltaph. This should not be made too large, as anharmonic terms
could then become significant, neither should it be too small as this can introduce numerical
error.

5.15 deltast

deltast | size of the change in lattice vectors used for calculating the stress | real | 0.01
tensor

The stress tensor is computed by changing the lattice vector matrix A by
A — (14 6te;)A,

where dt is an infinitesimal equal in practice to deltast and e; is the i*® strain tensor.
Numerical finite differences are used to compute the stress tensor as the derivative of the
total energy dFE;/dt.

5.16 dft+u
dftu type of DFT+U calculation integer | 0
inpdftu | type of input for DFT+U calculation integer | 1
is species number integer | -
1 angular momentum value integer | -1
u the desired U value real 0.0
j the desired J value real 0.0

This block contains the parameters required for an DFT+U calculation, with the list of
parameters for each species terminated with a blank line. The type of double counting
required is set with the parameter dftu. Currently implemented are:

0 No DFT+HU calculation

1 Fully localised limit (FLL)

2 Around mean field (AFM)

3 An interpolation between FLL and AFM

The type of input parameters is set with the parameter inpdftu. The current possibilities
are:

1 UandlJ

2 Slater parameters

3 Racah parameters

4 Yukawa screening length

5 U and determination of corresponding Yukawa screening length

See (amongst others) Phys. Rev. B 67, 153106 (2003), Phys. Rev. B 52, R5467 (1995),
Phys. Rev. B 60, 10763 (1999), and Phys. Rev. B 80, 035121 (2009).
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5.17 dlefe

dlefe | difference between the fixed linearisation energy and the Fermi | real | —0.1
energy

When autolinengy is .true. then the fixed linearisation energies are set to the Fermi
energy plus dlefe.

5.18 dosmsum

’ dosmsum ‘ .true. if the partial DOS is to be summed over m logical | .false.

By default, the partial density of states is resolved over (I, m) quantum numbers. If dosmsum
is set to .true. then the partial DOS is summed over m, and thus depends only on .

5.19 dosssum

’ dosssum ‘ .true. if the partial DOS is to be summed over spin logical | .false.

By default, the partial density of states for spin-polarised systems is spin resolved.

5.20 epsband

’ epsband ‘ convergence tolerance for determining band energies ‘ real ‘ 1 x10712

APW and local-orbital linearisation energies are determined from the band energies. This
is done by first searching upwards in energy until the radial wavefunction at the muffin-
tin radius is zero. This is the energy at the top of the band, denoted E;. A downward
search is now performed from FE; until the slope of the radial wavefunction at the muffin-tin
radius is zero. This energy, Ey, is at the bottom of the band. The band energy is taken
as (Ey + E),)/2. If either F; or E}, is not found, then the band energy is set to the default
value.

5.21 epschg

epschg | maximum allowed error in the calculated total charge beyond | real | 1 x 1073
which a warning message will be issued

5.22 epsengy

’ epsengy ‘ convergence criterion for the total energy ‘ real ‘ 1x107%

See epspot.

5.23 epsforce

epsforce | convergence tolerance for the forces during a geometry op- | real | 2 x 1073
timisation run

If the mean absolute value of the atomic forces is less than epsforce then the geometry
optimisation run is ended. See also tasks and latvopt.
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5.24 epslat

] epslat ‘ vectors with lengths less than this are considered zero ‘ real ‘ 10-6 ‘

Sets the tolerance for determining if a vector or its components are zero. This is to account
for any numerical error in real or reciprocal space vectors.

5.25 epsocc
epsocc | smallest occupancy for which a state will contribute to the | real | 1 x 1078
density
5.26 epspot

’ epspot ‘ convergence criterion for the Kohn-Sham potential and field ‘ real ‘ 1x1076

If the RMS change in the Kohn-Sham potential and magnetic field is smaller than epspot
and the absolute change in the total energy is less than epsengy, then the self-consistent
loop is considered converged and exited. For geometry optimisation runs this results in
the forces being calculated, the atomic positions updated and the loop restarted. See also
epsengy and maxscl.

5.27 epsstress

epsstress | convergence tolerance for the stress tensor during a geom- | real | 5 x 10~%
etry optimisation run with lattice vector relaxation

See also epsforce and latvopt.

5.28 emaxelnes

emaxelnes | maximum allowed initial-state eigenvalue for ELNES calcula- | real | —1.2
tions
5.29 emaxrf

emaxrf | energy cut-off used when calculating Kohn-Sham response func- | real | 10°
tions

A typical Kohn-Sham response function is of the form

op(r,w) 1
dus(r',w) Ny

Xs(ra I'/, (,U)

Y

L iklp)K) K1) k)
Z(fzk_fjk’) W+t (e — 25 :
ik, K/ ik 8]k’) +n
where p is the density operator; N is the number of k-points; €, and f;) are the eigenvalues
and occupation numbers, respectively. The variable emaxrf is an energy window which
limits the summation over states in the formula above so that |e;x — €permi| < emaxrf.
Reducing this can result in a faster calculation at the expense of accuracy.
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5.30 fracinr

fracinr | fraction of the muffin-tin radius up to which 1lmaxinr is used as | real | 0.1
the angular momentum cut-off

See 1maxinr.

5.31 fsmtype

fsmtype | O for no fixed spin moment (FSM), 1 for total FSM, 2 for local | integer | 0
muffin-tin FSM, and 3 for both total and local FSM

Set to 1, 2 or 3 for fixed spin moment calculations. To fix only the direction and not the
magnitude set to —1, —2 or —3. See also momfix, mommtfix, taufsm and spinpol.

5.32 ftmtype

ftmtype | 1 to enable a fixed tensor moment (FTM) calculation, 0 other- | integer | 0
wise

If ftmtype is —1 then the symmetry corresponding to the tensor moment is broken but no
FTM calculation is performed. See Phys. Rev. Lett. 103, 107202 (2009) and also tmomfix.

5.33 fxclrc

fxclrc | parameters for the dynamical long-range contribution | real(2) | (0.0,0.0)
(LRC) to the TDDFT exchange-correlation kernel

These are the parameters a and § for the kernel proposed in Phys. Rev. B 72, 125203
(2005), namely

a + fw?
f:l?C(Ga Gl) q, (U) = _T(SG,G/(SG,O-
5.34 fxtype
’ fxctype ‘ integer defining the type of exchange-correlation kernel fy. ‘ integer ‘ -1 ‘

The acceptable values are:

—1  fxc defined by xctype

0,1 RPA (fxc=0)

200 Long-range contribution (LRC) kernel, S. Botti et al., Phys. Rev. B 72, 125203
(2005); see fxclrc

210 ‘Bootstrap’ kernel, S. Sharma, J. K. Dewhurst, A. Sanna and E. K. U. Gross, Phys.
Rev. Lett. 107, 186401 (2011)

5.35 gmaxrf

’ gmaxrf ‘ maximum length of |G| for computing response functions ‘ real ‘ 3.0 ‘
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5.36 gmaxvr

gmaxvr | maximum length of |G| for expanding the interstitial density and | real | 12.0
potential

This variable has a lower bound which is enforced by the code as follows:
gmaxvr — max (gmaxvr, 2 X gkmax + epslat)

See rgkmax and trimvg.

5.37 hdbse
hdbse | .true. if the direct term is to be included in the BSE Hamil- | logical | .true.
tonian
5.38 highq
] highq ‘ .true. if a high-quality parameter set should be used logical | .false.

Setting this to .true. results in some default parameters being changed to ensure good
convergence in most situations. See the subroutine readinput for the list of changed pa-
rameters and their values. These changes can be overruled by subsequent blocks in the
input file.

5.39 hmaxvr

’ hmaxvr ‘ maximum length of H-vectors ‘ real ‘ 6.0 ‘

The H-vectors are used for calculating X-ray and magnetic structure factors. They are also
used in linear response phonon calculations for expanding the density and potential in plane
waves. See also gmaxvr, vhmat, reduceh, wsfac and hkmax.

5.40 hxbse

’ hxbse ‘ .true. if the exchange term is to be included in the BSE Hamiltonian | .true.

5.41 hybrid

hybrid | .true if a hybrid functional is to be used when running a | logical | .false
Hartree-Fock calculation

See also hybridc and xctype.

5.42 hybridc

’ hybridc ‘ hybrid functional mixing coefficient ‘ real ‘ 1.0 ‘

5.43 intraband

intraband | .true. if the intraband (Drude-like) contribution is to | logical | .false.
be added to the dieletric tensor
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5.44 isgkmax

isgkmax | species for which the muffin-tin radius will be used for calcu- | integer | —1
lating gkmax

By default (—1) the average muffin-tin radius is used for determining gkmax from rgkmax.
This can be changed by setting isgkmax either to the desired species number; or to —2 if
gkmax = rgkmax/2; or to —3 in which case the smallest radius is used.

5.45 kstlist

’ kstlist (i) ‘ ith k-point and state pair ‘ integer(2) ‘ (1,1) ‘

This is a user-defined list of k-point and state index pairs which are those used for plotting
wavefunctions and writing L, S and J expectation values. Only the first pair is used by the
aforementioned tasks. The list should be terminated by a blank line.

5.46 latvopt

latvopt | type of lattice vector optimisation to be performed during struc- | integer | 0
tural relaxation

Unconstrained optimisation of the lattice vectors will be performed with task = 2,3 when
latvopt = 1. When latvopt = 2 the lattice vectors will be optimised while keeping the
unit cell volume fixed. In either case, the crystal symmetry is retained during optimisation.
By default (latvopt = 0) no lattice vector optimisation is performed during structural
relaxation. See also tauOlatv.

5.47 1maxapw

’ lmaxapw ‘ angular momentum cut-off for the APW functions integer ‘ 8 ‘

5.48 1lmaxdos

’ 1lmaxdos ‘ angular momentum cut-off for the partial DOS plot integer ‘ 3 ‘

5.49 1lmaxinr

lmaxinr | angular momentum cut-off for the muffin-tin density and poten- | integer | 2
tial on the inner part of the muffin-tin

Close to the nucleus, the density and potential is almost spherical and therefore the spherical
harmonic expansion can be truncated a low angular momentum. See also fracinr.

5.50 1lmaxmat

lmaxmat | angular momentum cut-off for the outer-most loop in the hamil- | integer | 6
tonian and overlap matrix set up
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5.51 1lmaxvr

] lmaxvr ‘ angular momentum cut-off for the muffin-tin density and potential | integer ‘ 7 ‘

5.52 lmirep

Imirep | .true. if the Y}, basis is to be transformed into the basis of | logical | .true.
irreducible representations of the site symmetries for DOS
plotting

When lmirep is set to .true., the spherical harmonic basis is transformed into one in which
the site symmetries are block diagonal. Band characters determined from the density matrix
expressed in this basis correspond to irreducible representations, and allow the partial DOS
to be resolved into physically relevant contributions, for example e, and t.

5.53 lorbcnd

lorbcnd | .true. if conduction state local-orbitals are to be auto- | logical | .false.
matically added to the basis

Adding these higher energy local-orbitals can improve calculations which rely on accurate
unoccupied states, such as the response function. See also lorbordc.

5.54 lorbordc

lorbordc | the order of the conduction state local-orbitals integer ‘ 3 ‘

See lorbcend.

5.5 lradstp

’ lradstp ‘ radial step length for determining coarse radial mesh integer ‘ 4 ‘

Some muffin-tin functions (such as the density) are calculated on a coarse radial mesh and
then interpolated onto a fine mesh. This is done for the sake of efficiency. 1radstp defines
the step size in going from the fine to the coarse radial mesh. If it is too large, loss of
precision may occur.

5.56 maxitoep

maxitoep | maximum number of iterations when solving the exact ex- | integer | 200
change integral equations

See tauloep.

5.57 maxscl

’ maxscl ‘ maximum number of self-consistent loops allowed ‘ integer ‘ 200 ‘

This determines after how many loops the self-consistent cycle will terminate if the conver-
gence criterion is not met. If maxscl is 1 then the density and potential file, STATE.QUT,
will not be written to disk at the end of the loop. See epspot.
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5.58 mixtype

] mixtype ‘ type of mixing required for the potential integer ‘ 1 ‘

Currently implemented are:

1 Adaptive linear mixing
2 Pulay mixing, Chem. Phys. Lett. 73, 393 (1980)
3 Broyden mixing, J. Phys. A: Math. Gen. 17, L317 (1984)

5.59 mixsdb

] mixsdb ‘ subspace dimension for Broyden mixing integer ‘ 5 ‘

This is the number of mixing vectors which define the subspace in which the Hessian matrix
is calculated. See mixtype and broydpm.

5.60 mixsdp

] mixsdp ‘ subspace dimension for Pulay mixing integer ‘ 3 ‘

See mixsdb and mixtype.

5.61 molecule

’ molecule ‘ .true. if the system is an isolated molecule logical | .false.

If molecule is .true., then the atomic positions, a, given in the atoms block are assumed
to be in Cartesian coordinates.

5.62 momfix

’ momfix ‘ the desired total moment for a FSM calculation ‘ real(3) ‘ (0.0,0.0,0.0) ‘

Note that all three components must be specified (even for collinear calculations). See
fsmtype, taufsm and spinpol.

5.63 mommtfix

is species number integer 0

ia atom number integer 0

mommtfix | the desired muffin-tin moment for a FSM calcula- | real(3) | (0.0,0.0,0.0)
tion

The local muffin-tin moments are specified for a subset of atoms, with the list terminated
with a blank line. Note that all three components must be specified (even for collinear
calculations). See fsmtype, taufsm and spinpol.

5.64 mstar

mstar | Value of the effective mass parameter used for adaptive determina- | real | 10.0
tion of swidth

See autoswidth.
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5.65 mustar

mustar | Coulomb pseudopotential, u*, used in the McMillan-Allen-Dynes | real | 0.15
equation

This is used when calculating the superconducting critical temperature with the formula
Phys. Rev. B 12, 905 (1975)

Wiog —1.04(1 4 ))

Tc = )
1.2kp P N = (1 + 0.62))

where wjog is the logarithmic average frequency and A is the electron-phonon coupling
constant.

5.66 ncbse

’ ncbse ‘ number of conduction states to be used for BSE calculations integer ‘ 3 ‘

See also nvbse.

5.67 ncgga

ncgga | set to .true. for non-collinear GGA calculations which are | logical | .false.
difficult to converge

Setting this variable to .true. results in the second-order gradients of the spin-density
in the intersitial being averaged. This can improve convergence for non-collinear GGA
calculations, but necessarily makes the exchange-correlation potential non-variational.

5.68 ndspem

ndspem | the number of k-vector displacements in each direction around | integer | 1
vklem when computing the numerical derivatives for the effective

mass tensor

See deltaem and vklem.

5.69 nempty

’ nempty \ the number of empty states per atom and spin \ real \ 4.0 ‘

Defines the number of eigenstates beyond that required for charge neutrality. When running
metals it is not known a priori how many states will be below the Fermi energy for each
k-point. Setting nempty greater than zero allows the additional states to act as a buffer
in such cases. Furthermore, magnetic calculations use the first-variational eigenstates as a
basis for setting up the second-variational Hamiltonian, and thus nempty will determine the
size of this basis set. Convergence with respect to this quantity should be checked.

5.70 ngridk

’ ngridk ‘ the k-point mesh sizes ‘ integer(3) ‘ (1,1,1) ‘
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The k-vectors are generated using

i1+v1 i2+v2 i3+ 3

k=
( n1 ) no ) ns )7

where 7; runs from 0 to n; —1 and 0 < v; <1 for j = 1,2,3. The vector v is given by the
variable vkloff. See also reducek.

5.71 ngridq

| ngridq | the phonon g-point mesh sizes | integer(3) | (1,1,1) |

Same as ngridk, except that this mesh is for the phonon ¢-points. See also reduceg.

5.72 nosource

nosource | when set to .true., source fields are projected out of | logical | .false.
the exchange-correlation magnetic field

Experimental feature.

5.73 notes

’ notes (i) ‘ the ith line of the notes ‘ string ‘ - ‘

This block allows users to add their own notes to the file INFO.QUT. The block should be
terminated with a blank line, and no line should exceed 80 characters.

5.74 npmae

’ npmae ‘ number or distribution of directions for MAE calculations ‘ integer ‘ -1 ‘

Automatic determination of the magnetic anisotropy energy (MAE) requires that the total
energy is determined for a set of directions of the total magnetic moment. This variable
controls the number or distribution of these directions. The convention is:

—4,-3,—2,—1 Cardinal directions given by the primitive translation vectors niA; +
naAsg + n3As, where 1 < n; < |npmae|

2 Cartesian x and z directions
3 Cartesian x, y and z directions
4,5,... Even distribution of npmae directions
5.75 ntemp
’ ntemp ‘ number of temperature steps integer ‘ 20 ‘

This is the number of temperature steps to be used in the Eliashberg gap and thermody-
namic properties calculations.

5.76 nvbse

] nvbse ‘ number of valence states to be used for BSE calculations integer ‘ 2 ‘

See also ncbse.
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5.77 nwrite

nwrite | number of self-consistent loops after which STATE.QUT is to be | integer | 0
written

Normally, the density and potentials are written to the file STATE. OUT only after completion
of the self-consistent loop. By setting nwrite to a positive integer the file will instead be
written every nwrite loops.

5.78 optcomp

optcomp | the components of the first- or second-order optical ten- | integer(3) | (1,1,1)
sor to be calculated

This selects which components of the optical tensor you would like to plot. Only the first
two are used for the first-order tensor. Several components can be listed one after the other
with a blank line terminating the list.

5.79 phwrite

nphwrt number of g-points for which phonon modes are to | integer 1
be found
vqlwrt (i) | the ith g-point in lattice coordinates real(3) | (0.0,0.0,0.0)

This is used in conjunction with task=230. The code will write the phonon frequencies
and eigenvectors to the file PHONON.OUT for all the ¢-points in the list. The g-points can
be anywhere in the Brillouin zone and do not have to lie on the mesh defined by ngridqg.
Obviously, all the dynamical matrices have to be computed first using task=200.

5.80 plotid
nvpld number of vertices integer 2
nppld number of plotting points integer 200
vvlpld (i) | lattice coordinates for vertex ¢ real(3) | (0.0,0.0,0.0) — (1.0,1.0,1.0)

Defines the path in either real or reciprocal space along which the 1D plot is to be produced.
The user should provide nvpld vertices in lattice coordinates.

5.81 plot2d
vclp2d (1) | first corner (origin) real(3) | (0.0,0.0,0.0)
vclp2d(2) | second corner real(3) (1.0,0.0,0.0)
vclp2d(3) | third corner real(3) (0.0,1.0,0.0)
np2d number of plotting points in both directions integer(2) (40, 40)

Defines the corners of a parallelogram and the grid size used for producing 2D plots.

5.82 plot3d
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vclp3d(1) | first corner (origin) real(3) | (0.0,0.0,0.0)
vclp3d(2) | second corner real(3) | (1.0,0.0,0.0)
vclp3d(3) | third corner real(3) | (0.0,1.0,0.0)
vclp3d(4) | fourth corner real(3) | (0.0,0.0,1.0)
np3d number of plotting points each direction integer(3) | (20, 20,20)

Defines the corners of a box and the grid size used for producing 3D plots.

5.83 primcell

’ primcell ‘ .true. if the primitive unit cell should be found logical | .false.

Allows the primitive unit cell to be determined automatically from the conventional cell.
This is done by searching for lattice vectors among all those which connect atomic sites,
and using the three shortest which produce a unit cell with non-zero volume.

5.84 radkpt

] radkpt ‘ radius of sphere used to determine k-point density ‘ real ‘ 40.0 ‘

Used for the automatic determination of the k-point mesh. If autokpt is set to .true. then
the mesh sizes will be determined by n; = Ry|B;|+ 1, where B; are the primitive reciprocal
lattice vectors.

5.85 readadu

readadu | set to .true. if the interpolation constant for DFT+U | logical | .false.
should be read from file rather than calculated

When dftu=3, the DFT+U energy and potential are interpolated between FLL and AFM.
The interpolation constant, «, is normally calculated from the density matrix, but can also
be read in from the file ALPHADU.QUT. This allows the user to fix «, but is also necessary
when calculating forces, since the contribution of the potential of the variation of a with
respect to the density matrix is not computed. See dft+u.

5.86 reducebf

] reducebf ‘ reduction factor for the external magnetic fields ‘ real ‘ 1.0 ‘

After each self-consistent loop, the external magnetic fields are multiplied with reducebf.
This allows for a large external magnetic field at the start of the self-consistent loop to
break spin symmetry, while at the end of the loop the field will be effectively zero, i.e.
infinitesimal. See bfieldc and atoms.

5.87 reduceh

reduceh | set to .true. if the reciprocal H-vectors should be reduced | logical | .true.
by the symmorphic crystal symmetries

See hmaxvr and vmat.
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5.88 reducek

] reducek ‘ type of reduction of the k-point set ‘ integer ‘ 1 ‘

Types of reduction are defined by the symmetry group used:

0 no reduction
1 reduce with full crystal symmetry group (including non-symmorphic symmetries)
2 reduce with symmorphic symmetries only

See also ngridk and vkloff.

5.89 reduceq

’ reduceq ‘ type of reduction of the ¢g-point set integer ‘ 1 ‘

See reducek and ngridg.

5.90 rgkmax
| rgkmax | RN x max{|G + k|[} | real | 7.0 |

This sets the maximum length for the G + k vectors, defined as rgkmax divided by the
average muffin-tin radius. See isgkmax.

5.91 rotavec

] axang ‘ axis-angle representation of lattice vector rotation ‘ real(4) ‘ (0.0,0.0,0.0,0.0) ‘

This determines the rotation matrix which is applied to the lattice vectors prior to any
calculation. The first three components specify the axis and the last component is the
angle in degrees. The ‘right-hand rule’ convention is followed.

5.92 scale

’ scale ‘ lattice vector scaling factor ‘ real ‘ 1.0 ‘

Scaling factor for all three lattice vectors. Applied in conjunction with scalel, scale2 and
scale3.

5.93 scalel/2/3

’ scalel/2/3 ‘ separate scaling factors for each lattice vector ‘ real ‘ 1.0 ‘

5.94 scissor

’ scissor ‘ the scissor correction ‘ real ‘ 0.0 ‘

This is the scissor shift applied to states above the Fermi energy Phys. Rev. B 43, 4187
(1991). Affects optics calculations only.

5.95 scrpath

’ scrpath ‘ scratch space path ‘ string ‘ null ‘
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This is the scratch space path where the eigenvector files EVALFV.0OUT and EVALSV.QUT will
be written. If the run directory is accessed via a network then scrpath can be set to a
directory on the local disk, for example /tmp/. Note that the forward slash / at the end of
the path must be included.

5.96 socsct

’ socscf ‘ scaling factor for the spin-orbit coupling term in the Hamiltonian ‘ real ‘ 1.0 ‘

This can be used to enhance the effect of spin-orbit coupling in order to accurately determine
the magnetic anisotropy energy (MAE).

5.97 spincore

’ spincore ‘ set to .true. if the core should be spin-polarised logical | .false.

5.98 spinorb

’ spinorb ‘ set to .true. if a spin-orbit coupling is required logical ‘ .false. ‘

If spinorb is .true., then a o - L term is added to the second-variational Hamiltonian. See
spinpol.

5.99 spinpol

’ spinpol ‘ set to .true. if a spin-polarised calculation is required logical | .false.

If spinpol is .true., then the spin-polarised Hamiltonian is solved as a second-variational
step using two-component spinors in the Kohn-Sham magnetic field. The first variational
scalar wavefunctions are used as a basis for setting this Hamiltonian.

5.100 spinsprl

’ spinsprl ‘ set to .true. if a spin-spiral calculation is required ‘ logical | .false.

Experimental feature for the calculation of spin-spiral states. See vqlss for details.

5.101 sppath

’ sppath ‘ path where the species files can be found ‘ string ‘ null ‘

Note that the forward slash / at the end of the path must be included.

5.102 ssdph

ssdph | set to .true. if a complex de-phasing factor is to be used in | logical | .true.
spin-spiral calculations

If this is .true. then spin-spiral wavefunctions in each muffin-tin at position r, are de-

phased by the matrix
efiq-ra/Z 0
< 0 eiq‘ra/2> ’
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In simple situations, this has the advantage of producing magnon dynamical matrices which
are already in diagonal form. This option should be used with care, and a full understanding
of the spin-spiral configuration is required. See spinsprl.

5.103 stype

] stype ‘ integer defining the type of smearing to be used integer \ 3 ‘

A smooth approximation to the Dirac delta function is needed to compute the occupancies
of the Kohn-Sham states. The variable swidth determines the width of the approximate
delta function. Currently implemented are

0 Gaussian

1 Methfessel-Paxton order 1, Phys. Rev. B 40, 3616 (1989)
2 Methfessel-Paxton order 2

3 Fermi-Dirac

See also autoswidth and swidth.

5.104 swidth

’ swidth ‘ width of the smooth approximation to the Dirac delta function ‘ real ‘ 0.001 ‘

See stype for details.
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5.105 tasks

] task(i) ‘ the ith task integer ‘ -1 ‘

A list of tasks for the code to perform sequentially. The list should be terminated with a
blank line. Each task has an associated integer as follows:

1

N = O

5
10
14

15
16
20
21

25

31, 32, 33
41, 42, 43
51, 52, 53
61, 62, 63
65

72, 73
82, 83
91, 92, 93
100

101

102

105

110

115
120
121

122
125
130
135

Write out the version number of the code.

Ground state run starting from the atomic densities.

Resumption of ground-state run using density in STATE.OUT.

Geometry optimisation run starting from the atomic densities, with atomic
positions written to GEOMETRY . OUT.

Resumption of geometry optimisation run using density in STATE.QUT but
with positions from elk.in.

Ground state Hartree-Fock run.

Total, partial and interstitial density of states (DOS).

Plots the smooth Dirac delta and Heaviside step functions used by the code
to calculate occupancies.

Output L, S and J total expectation values.

Output L, S and J expectation values for each k-point and state in kstlist.
Band structure plot.

Band structure plot which includes angular momentum characters for every
atom.

Compute the effective mass tensor at the k-point given by vklem.

1/2/3D charge density plot.

1/2/3D exchange-correlation and Coulomb potential plots.

1/2/3D electron localisation function (ELF) plot.

1/2/3D wavefunction plot: |y (r)[.

Write the core wavefunctions to file for plotting.

2/3D plot of magnetisation vector field, m(r).

2/3D plot of exchange-correlation magnetic vector field, Byc(r).

1/2/3D plot of V - Byc(r).

3D Fermi surface plot using the scalar product p(k) = II;(e;x — €r).

3D Fermi surface plot using separate bands (minus the Fermi energy).

3D Fermi surface which can be plotted with XCrysDen.

3D nesting function plot.

Calculation of M&ssbauer contact charge densities and magnetic fields at the
nuclear sites.

Calculation of the electric field gradient (EFG) at the nuclear sites.

Output of the momentum matrix elements (V| — V|V ).

Linear optical dielectric response tensor calculated within the random phase
approximation (RPA) and in the ¢ — 0 limit, with no microscopic contribu-
tions.

Magneto optical Kerr effect (MOKE) angle.

Non-linear optical second harmonic generation.

Output matrix elements of the type (k14| exp[i(G + q) - r]|¥,k).

Output all wavefunctions expanded in the plane wave basis up to a cut-off
defined by rgkmax.
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140
142, 143
152, 153
162
180

185
186

187
190
195
196
200

201
205

210
220
230
240

245
250

300
320

330

400

Energy loss near edge structure (ELNES).

2/3D plot of the electric field E(r) = VVi(r).

2/3D plot of m(r) x By (r).

Scanning-tunneling microscopy (STM) image.

Generate the RPA inverse dielectric function with local contributions and write
it to file.

Write the Bethe-Salpeter equation (BSE) Hamiltonian to file.

Diagonalise the BSE Hamiltonian and write the eigenvectors and eigenvalues
to file.

Output the BSE dielectric response function.

Write the atomic geometry to file for plotting with XCrySDen and V_Sim.
Calculation of X-ray density structure factors.

Calculation of magnetic structure factors.

Calculation of phonon dynamical matrices on a g-point set defined by ngridq
using the supercell method.

Phonon dry run: just produce a set of empty DYN files.

Calculation of phonon dynamical matrices using density functional perturba-
tion theory (DFPT).

Phonon density of states.

Phonon dispersion plot.

Phonon frequencies and eigenvectors for an arbitrary g-point.

Generate the g-dependent phonon linewidths and electron-phonon coupling
constants and write them to file.

Phonon linewidths plot.

Eliashberg function o?F(w), electron-phonon coupling constant A, and the
McMillan-Allen-Dynes critical temperature 7.

Reduced density matrix functional theory (RDMFT) calculation.
Time-dependent density functional theory (TDDFT) calculation of the dielec-
tric response function including microscopic contributions.

TDDFT calculation of the spin-polarised response function for arbitrary q-
vectors.

Calculation of tensor moments and corresponding DFT+U Hartree-Fock en-
ergy contributions.

5.106 taulatp

’ taulatp ‘ the step size to be used for atomic position optimisation

‘ real ‘ 0.25 ‘

The position of atom « is updated on step m of a geometry optimisation run using

S (s

where 7, is set to tauOatp for m = 0, and incremented by the same amount if the atom
is moving in the same direction between steps. If the direction changes then 7, is reset to

taulOatp.

5.107 tauOlatv

] taullatv ‘ the step size to be used for lattice vector optimisation

‘ real ‘ 0.5 ‘
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This parameter is used for lattice vector optimisation in a procedure identical to that for
atomic position optimisation. See tauOatp and latvopt.

5.108 tauoep

tauoep | step length initial value and scaling factors for the | real(3) | (1.0,0.2,1.5)
OEP iterative solver

The optimised effective potential is determined using an interative method. [Phys. Rev.
Lett. 98, 196405 (2007)]. At the first iteration the step length is set to tauoep(1). During
subsequent iterations, the step length is scaled by tauoep(2) or tauoep(3), when the
residual is increasing or decreasing, respectively. See also maxitoep.

5.109 taufsm

taufsm | the step size to be used when finding the effective magnetic field | real | 0.01
in fixed spin moment calculations

An effective magnetic field, Bpsy, is required for fixing the spin moment to a given value,
Mpgsm. This is found by adding a vector to the field which is proportional to the difference
between the moment calculated in the th self-consistent loop and the required moment:

Bify = Bhsy + A (M’ — Mrgw)

where A is proportional to taufsm. See also fsmtype, momfix and spinpol.

5.110 tfibs
tfibs | set to .true. if the IBS correction to the force should be | logical | .true.
calculated

Because calculation of the incomplete basis set (IBS) correction to the force is fairly time-
consuming, it can be switched off by setting tfibs to .false. This correction can then be
included only when necessary, i.e. when the atoms are close to equilibrium in a geometry
optimisation run.

5.111 tforce

tforce | set to .true. if the force should be calculated at the end | logical | .false.
of the self-consistent cycle

This variable is automatically set to .true. when performing geometry optimisation.

5.112 tmwrite

tmwrite | set to .true. if the tensor moments and the correspond- | logical | .false.
ing decomposition of DFT+U energy should be calculated
at every loop of the self-consistent cycle

This variable is useful to check the convergence of the tensor moments in DFT+U cacu-
lations. Alternatively, with task equal to 400, one can calculate the tensor moments and
corresponding DFT+U energy contributions from a given density matrix and set of Slater
parameters at the end of the self-consistent cycle.
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5.113 trimvg

trimvg | set to .true. if the Fourier components of the Kohn-Sham | logical | .false.
potential for |G| > gmaxvr/2 are to be set to zero

This fixes stability problems which can occur for large rgkmax. Should be used only in
conjunction with large gmaxvr.

5.114 tefvit

tefvit | set to .true. if the first-variational eigenvalue equation | logical | .false.
should be solved iteratively

5.115 tefvr

tefvr | set to .true. if a real symmetric eigenvalue solver should be | logical | .true.
used for crystals which have inversion symmetry

For crystals with inversion symmetry, the first-variational Hamiltonian and overlap matrices
can be made real by using appropriate transformations. In this case, a real symmetric
(instead of complex Hermitian) eigenvalue solver can be used. This makes the calculation
about three times faster.

5.116 tmomfix

ntmfix number of tensor moments (TM) to be fixed integer | 0
is(i) species number for entry integer | -
ia(i) atom number integer | -
1, n) (1) [ and n indices of TM integer | -
(k, p, x, (@A) or

(k, p, r, t)(1) indices for the 2-index or 3-index TM, respectively | integer | -
z(1) complex TM value complex | -
p(i) parity of spatial rotation integer | -
aspl(i) Euler angles of spatial rotation real(3) | -
aspn(i) Euler angles of spin rotation real(3) | -

This block sets up the fixed tensor moment (FTM). There should be as many TM entries
as ntmfix. See Phys. Rev. Lett. 103, 107202 (2009) for the tensor moment indexing
convention. This is a highly complicated feature of the code, and should only be attempted
with a full understanding of tensor moments.

5.117 +tshift

tshift | set to .true. if the crystal can be shifted so that the atom | logical | .true.
closest to the origin is exactly at the origin

5.118 vhmat
vhmat (1) | matrix row 1 real(3) | (1.0,0.0,0.0)
vhmat (2) | matrix row 2 real(3) | (0.0,1.0,0.0)
vhmat (3) | matrix row 3 real(3) | (0.0,0.0,1.0)
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This is the transformation matrix M applied to every vector H in the structure factor
output files SFACRHO.0UT and SFACMAG.OUT. It is stored in the usual row-column setting
and applied directly as H = MH to every vector but only when writing the output files.
See also hmaxvr and reduceh.

5.119 vklem

the k-point in lattice coordinates at which to compute
the effective mass tensors

vklem real(3) | (0.0,0.0,0.0)

See deltaem and ndspem.

5.120 vkloff

’ vkloff ‘ the k-point offset vector in lattice coordinates ‘ real(3) ‘ (0.0,0.0,0.0) ‘

See ngridk.

5.121 wvqlss

vglss | the g-vector of the spin-spiral state in lattice coordi- | real(3) | (0.0,0.0,0.0)
nates

Spin-spirals arise from spinor states assumed to be of the form

Ut (p)eilk+a/2)r
wi(r) = ( e, ) .

Ul({li(r)ei(qu/2)-r

These are determined using a second-variational approach, and give rise to a magnetisation
density of the form

m(r) = (my(r)cos(q - r), my(r)sin(q - r), m,(r)),

where m,, m, and m, are lattice periodic. See also spinsprl.

5.122 wplot
nwplot | number of frequency/energy points in the DOS or op- | integer 500
tics plot
ngrkf fine k-point grid size used for integrating functions in | integer 100
the Brillouin zone
nswplot | level of smoothing applied to DOS/optics output integer 1
wplot frequency/energy window for the DOS or optics plot real(2) | (—0.5,0.5)

DOS and optics plots require integrals of the kind

Q
o) = g /B 18 = €10k

These are calculated by first interpolating the functions e(k) and f(k) with the trilinear
method on a much finer mesh whose size is determined by ngrkf. Then the w-dependent
histogram of the integrand is accumulated over the fine mesh. If the output function is
noisy then either ngrkf should be increased or nwplot decreased. Alternatively, the output
function can be artificially smoothed up to a level given by nswplot. This is the number of
successive 3-point averages to be applied to the function g.
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5.123 wsfac

wsfac | energy window to be used when calculating density or | real(2) | (—10°,10°)
magnetic structure factors

Only those states with eigenvalues within this window will contribute to the density or
magnetisation. See also hmaxvr and vhmat.

5.124 xctype

xctype | integers defining the type of exchange-correlation func- | integer(3) | (3,0,0)
tional to be used

Normally only the first value is used to define the functional type. The other value may be
used for external libraries. Currently implemented are:

—n  Exact-exchange optimised effective potential (EXX-OEP) method with correlation
energy and potential given by functional number n

1 No exchange-correlation funtional (Fy. = 0)

2 LDA, Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)

3 LSDA, Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)

4 LDA, X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)

5 LSDA, von Barth-Hedin, J. Phys. C'5, 1629 (1972)

20  GGA, Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

21  GGA, Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998)

22 GGA, PBEsol, Phys. Rev. Lett. 100, 136406 (2008)

26 GGA, Wu-Cohen exchange (WC06) with PBE correlation, Phys. Rev. B T3,
235116 (2006)

30  GGA, Armiento-Mattsson (AMO05) spin-unpolarised functional, Phys. Rev. B T2,
085108 (2005)

100 Libxc functionals; the second and third values of xctype define the exchange and
correlation functionals in the Libxc library, respectively

6 Contributing to Elk

Please bear in mind when writing code for the Elk project that it should be an exercise
in physics and not software engineering. All code should therefore be kept as simple and
concise as possible, and above all it should be easy for anyone to locate and follow the
Fortran representation of the original mathematics. We would also appreciate the following
conventions being adhered to:

e Strict Fortran 90/95 should be used. Features which are marked as obsolescent in
F90/95 should be avoided. These include assigned format specifiers, labeled do-loops,
computed goto statements and statement functions.

e Modules should be used in place of common blocks for declaring global variables. Use
the existing modules to declare new global variables.

e Any code should be written in lower-case free form style, starting from column one.
Try and keep the length of each line to fewer than 80 characters using the & character
for line continuation.
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Every function or subroutine, no matter how small, should be in its own file named
routine.f90, where routine is the function or subroutine name. It is recommended
that the routines are named so as to make their purpose apparent from the name
alone.

Use of implicit none is mandatory. Remember also to define the intent of any
passed arguments.

Local allocatable arrays must be deallocated on exit of the routine to prevent memory
leakage. Use of automatic arrays should be limited to arrays of small size.

Every function or subroutine must be documented with the Protex source code doc-
umentation system. This should include a short IXTEX description of the algorithms
and methods involved. Equations which need to be referenced should be labeled with
routine_1, routine_2, etc. The authorship of each new piece of code or modification
should be indicated in the REVISION HISTORY part of the header. See the Protex
documentation for details.

Ensure as much as possible that a routine will terminate the program when given
improper input instead of continuing with erroneous results. Specifically, functions
should have a well-defined domain for which they return accurate results. Input
outside that domain should result in an error message and termination.

Report errors prior to termination with a short description, for example:

write (k,*)

write(*,’ ("Error(readinput): natoms <= 0 : ",I8)’) natoms(is)
write(*,’ (" for species ",I4)’) is

write (x,*)

stop

Wherever possible, real numbers outputted as ASCII data should be formatted with
the G18.10 specifier.

Avoid redundant or repeated code: check to see if the routine you need already exists,
before writing a new one.

All reading in of ASCII data should be done in the subroutine readinput. For bi-
nary data, separate routines for reading and writing should be used (for example
writestate and readstate).

Input filenames should be in lowercase and have the extension .in . All output
filenames should be in uppercase with the extension .0UT .

All internal units should be atomic. Input and output units should be atomic by
default and clearly stated otherwise. Rydbergs should not be used under any circum-
stances.
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6.1 Licensing

Routines which constitute the main part of the code are released under the GNU General
Public License (GPL). Library routines are released under the less restrictive GNU Lesser
General Public License (LGPL). Both licenses are contained in the file COPYING. Any con-
tribution to the code must be licensed at the authors’ discretion under either the GPL or
LGPL. Author(s) of the code retain the copyrights. Copyright and (L)GPL information
must be included at the beginning of every file, and no code will be accepted without this.
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7 Routine/Function Prologues

7.1 allatoms (Source File: allatoms.f90)

INTERFACE:
subroutine allatoms
USES:

use modmain

DESCRIPTION:

Solves the Kohn-Sham-Dirac equations for each atom type in the solid and finds the self-
consistent radial wavefunctions, eigenvalues, charge densities and potentials. The atomic
densities can then be used to initialise the crystal densities, and the atomic self-consistent
potentials can be appended to the muffin-tin potentials to solve for the core states. Note
that, irrespective of the value of xctype, exchange-correlation functional type 3 is used. See
also atoms, rhoinit, gencore and modxcifc

REVISION HISTORY:

Created September 2002 (JKD)
Modified for GGA, June 2007 (JKD)

7.2 atom (Source File: atom.f90)

INTERFACE:

subroutine atom(sol,ptnucl,zn,nst,n,l,k,occ,xctype,xcgrad,nr,r,eval,rho,vr,rwf)
USES:

use modxcifc

INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

ptnucl : .true. if the nucleus is a point particle (in,logical)

zn : nuclear charge (in,real)

nst : number of states to solve for (in,integer)

n : priciple quantum number of each state (in,integer(mst))

1 : quantum number 1 of each state (in,integer(mst))

k : quantum number k (1 or 1+1) of each state (in,integer(nst))
occ : occupancy of each state (inout,real(mnst))

xctype : exchange-correlation type (in,integer(3))
xcgrad : 1 for GGA functional, O otherwise (in,integer)
nr : number of radial mesh points (in,integer)
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T : radial mesh (in,real(nr))

eval : eigenvalue without rest-mass energy for each state (out,real(nst))
rho : charge density (out,real(nr))

vr : self-constistent potential (out,real(nr))

rwf : major and minor components of radial wavefunctions for each state

(out,real(nr,2,nst))

DESCRIPTION:

Solves the Dirac-Kohn-Sham equations for an atom using the exchange-correlation func-
tional xctype and returns the self-consistent radial wavefunctions, eigenvalues, charge den-
sities and potentials. Requires the exchange-correlation interface routine xcifc.

REVISION HISTORY:

Created September 2002 (JKD)
Fixed s.c. convergence problem, October 2003 (JKD)
Added support for GGA functionals, June 2006 (JKD)

7.3 atpstep (Source File: atpstep.f90)

INTERFACE:
subroutine atpstep
USES:

use modmain
use modmpi

DESCRIPTION:

Makes a geometry optimisation step and updates the current atomic positions according to
the force on each atom. If rj? is the position and FJ} is the force acting on it for atom j of
species ¢ and after time step m, then the new position is calculated by

m+1l _ _m m m m—1

where 7/ is a parameter governing the size of the displacement. If 7 - F;’;_l > 0 then 77

is increased, otherwise it is decreased.

REVISION HISTORY:

Created June 2003 (JKD)
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7.4 axangrot (Source File: axangrot.f90)

INTERFACE:
subroutine axangrot(v,th,rot)
INPUT/OUTPUT PARAMETERS:

v : axis vector (in,real)
th : rotation angle (in,real)
rot : rotation matrix (out,real(3,3))

DESCRIPTION:

Determines the 3 x 3 rotation matrix of a rotation specified by an axis-angle pair following
the ‘right-hand rule’. The axis vector need not be normalised. See rotaxang for details.

REVISION HISTORY:

Created February 2014 (JKD)

7.5 axangsu2 (Source File: axangsu2.f90)

subroutine axangsu2(v,th,su2) INPUT/OUTPUT PARAMETERS:

v : rotation axis vector (in,real(3))
th : rotation angle (in,real)
su2 : SU(2) representation of rotation (out,complex(2,2))

DESCRIPTION:

Finds the complex SU(2) representation of a rotation defined by an axis vector v and angle
f. The spinor rotation matrix is given explicitly by

6 6
RY2(%,0) = Icos§ — (V- J)sin 7

REVISION HISTORY:

Created August 2007 (JKD)

7.6 bandstr (Source File: bandstr.f90)

INTERFACE:

subroutine bandstr
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USES:
use modmain

DESCRIPTION:

Produces a band structure along the path in reciprocal space which connects the vertices in
the array vvlpld. The band structure is obtained from the second-variational eigenvalues
and is written to the file BAND.OUT with the Fermi energy set to zero. If required, band
structures are plotted to files BAND Sss_Aaaaa.0UT for atom aaaa of species ss, which
include the band characters for each [ component of that atom in columns 4 onwards.
Column 3 contains the sum over [ of the characters. Vertex location lines are written to
BANDLINES.OUT.

REVISION HISTORY:

Created June 2003 (JKD)

7.7 brzint (Source File: brzint.f90)

INTERFACE:
subroutine brzint(nsm,ngridk,nsk,ikmap,nw,wint,n,1ld,e,f,g)

INPUT/OUTPUT PARAMETERS:

nsm : level of smoothing for output function (in,integer)
ngridk : k-point grid size (in,integer(3))
nsk : k-point subdivision grid size (in,integer(3))

ikmap : map from grid to k-point set
(in,integer (0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1))

nw : number of energy divisions (in,integer)
wint : energy interval (in,real(2))
n : number of functions to integrate (in,integer)
1d : leading dimension (in,integer)
e : array of energies as a function of k-points (in,real(1d,*))
f : array of weights as a function of k-points (in,real(ld,*))
g : output function (out,real(nw))
DESCRIPTION:

Given energy and weight functions, e and f, on the Brillouin zone and a set of equidistant
energies wj;, this routine computes the integrals

Q
o) = o | 1003w = e10)dk

where 2 is the unit cell volume. This is done by first interpolating e and f on a finer k-point
grid using the trilinear method. Then for each e(k) on the finer grid the nearest w; is found
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and f(k) is accumulated in g(w;). If the output function is noisy then either nsk should be
increased or nw decreased. Alternatively, the output function can be artificially smoothed
up to a level given by nsm. See routine fsmooth.

REVISION HISTORY:

Created October 2003 (JKD)
Improved efficiency May 2007 (Sebastian Lebegue)

7.8 charge (Source File: charge.f90)

INTERFACE:
subroutine charge
USES:

use modmain
use modtest

DESCRIPTION:

Computes the muffin-tin, interstitial and total charges by integrating the density.

REVISION HISTORY:
Created April 2003 (JKD)

7.9 checkmt (Source File: checkmt.f90)

INTERFACE:
subroutine checkmt
USES:

use modmain
use modmpi
use modvars

DESCRIPTION:

Checks for muffin-tins which are too close together. If any such muffin-tins are found then
the radii of their associated atomic species are adjusted so that the minimum distance
between their surfaces is rmtdelta.

REVISION HISTORY:

Created May 2003 (JKD)
Modified, October 2011 (JKD)
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7.10 clebgor (Source File: clebgor.f90)

INTERFACE:

real(8) function clebgor(jil,j2,j3,ml,m2,m3)
INPUT/OUTPUT PARAMETERS:

j1, j2, j3 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the Clebsch-Gordon coefficients using the Wigner 3j-symbols

C(J1JaJslmimgoms) = (—1)1=724ms /975 4+ 1 <

Ju S I3 >

mp Mm2 —MmMs3

Suitable for J; < 50. See wigner3j.

REVISION HISTORY:
Created September 2003 (JKD)

7.11 connect (Source File: connect.f90)

INTERFACE:

subroutine connect(cvec,nv,np,vvl,vpl,dv,dp)

INPUT/OUTPUT PARAMETERS:

cvec : matrix of (reciprocal) lattice vectors stored column-wise
(in,real(3,3))

nv  : number of vertices (in,integer)

np : number of connecting points (in,integer)

vvl : vertex vectors in lattice coordinates (in,real(3,nv))

vpl : connecting point vectors in lattice coordinates (out,real(3,np))

dv : cummulative distance to each vertex (out,real(nv))

dp : cummulative distance to each connecting point (out,real(np))
DESCRIPTION:

Generates a set of points which interpolate between a given set of vertices. Vertex points
are supplied in lattice coordinates in the array vvl and converted to Cartesian coordinates
with the matrix cvec. Interpolating points are stored in the array vpl. The cummula-
tive distances to the vertices and points along the path are stored in arrays dv and dp,

respectively.

REVISION HISTORY:

Created June 2003 (JKD)
Improved September 2007 (JKD)
Improved again, July 2010 (T. McQueen and JKD)
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7.12 dielectric (Source File: dielectric.f90)

INTERFACE:
subroutine dielectric
USES:

use modmain
use modtest

DESCRIPTION:

Computes the dielectric tensor, optical conductivity and plasma frequency. The formulae
are taken from Physica Scripta T109, 170 (2004).

REVISION HISTORY:

Created November 2005 (SS and JKD)

Added plasma frequency and intraband contribution (S. Lebegue)
Complete rewrite, 2008 (JKD)

Fixed problem with plasma frequency, 2009 (Marty Blaber and JKD)
Parallelised, 2009 (M. Blaber)

7.13 dos (Source File: dos.f90)

INTERFACE:
subroutine dos
USES:

use modmain
use modtest

DESCRIPTION:

Produces a total and partial density of states (DOS) for plotting. The total DOS is written
to the file TDOS.OUT while the partial DOS is written to the file PDOS_Sss_Aaaaa.0UT for
atom aaaa of species ss. In the case of the partial DOS, each symmetrised (I, m)-projection
is written consecutively and separated by blank lines. If the global variable 1mirep is
.true., then the density matrix from which the (I, m)-projections are obtained is first
rotated into a irreducible representation basis, i.e. one that block diagonalises all the site
symmetry matrices in the Y}, basis. Eigenvalues of a quasi-random matrix in the Y}, basis
which has been symmetrised with the site symmetries are written to ELMIREP.QUT. This
allows for identification of the irreducible representations of the site symmetries, for example
eg Or tag, by the degeneracies of the eigenvalues. In the plot, spin-up is made positive and
spin-down negative. See the routines gendmat and brzint.

REVISION HISTORY:

Created January 2004 (JKD)
Parallelised and included sum over m, November 2009 (F. Cricchio)
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7.14 elfplot (Source File: elfplot.f90)

INTERFACE:
subroutine elfplot
USES:

use modmain

DESCRIPTION:

Outputs the electron localisation function (ELF) for 1D, 2D or 3D plotting. The spin-

averaged ELF is given by
1

feup(r) = 7 [D(r)/DO(r)]2’
where
B 1 1 [Vn(r)]2
and

N
T(r) =) |[V¥(r)]*
i=1

is the spin-averaged kinetic energy density from the spinor wavefunctions. The function D°
is the kinetic energy density for the homogeneous electron gas evaluated for n(r):

n(r)\ /3
Do(r):§(67r2)2/3 (;)) .

The ELF is useful for the topological classification of bonding. See for example T. Burnus,
M. A. L. Marques and E. K. U. Gross [Phys. Rev. A 71, 10501 (2005)].

REVISION HISTORY:

Created September 2003 (JKD)
Fixed bug found by F. Wagner (JKD)

7.15 eliashberg (Source File: eliashberg.f90)

INTERFACE:
subroutine eliashberg
USES:

use modmain
use modphonon
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DESCRIPTION:

Calculates the superconducting gap within Eliashberg theory. This implementation is
isotropic and assumes a flat density of states. The Eliashberg function o?F is required
as input for this calculation.

REVISION HISTORY:

Created December 2010 (Antonio Sanna)
Modified, June 2011 (JKD)

7.16 energy (Source File: energy.f90)

INTERFACE:
subroutine energy
USES:

use modmain
use moddftu
use modtest

DESCRIPTION:

Computes the total energy and its individual contributions. The kinetic energy is given by
T =3 niei - / (0|00 (r) + vee(x)]dr — / m(r) - (Buo(r) + Bex (r))dr,
i

where n; are the occupancies and ¢; are the eigenvalues of both the core and valence states; p
is the density; m is the magnetisation density; vc is the Coulomb potential; vy, and By, are
the exchange-correlation potential and magnetic field, respectively; and Bext is the external
magnetic field. The Hartree, electron-nuclear and nuclear-nuclear electrostatic energies are
combined into the Coulomb energy:

EC = EH + Een +Enn

1
= §Vc + EMad,

where
Vo= [ pte)uctdr
is the Coulomb potential energy. The Madelung energy is given by
1
Enfag = 5 Z 2o Ra,

«

where .
. C
Ro = limy (¢500(r) Y0 + 57
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for atom «a, with ’US;OO being the | = 0 component of the spherical harmonic expansion of vc
in the muffin-tin, and z, is the nuclear charge. Using the nuclear-nuclear energy determined
at the start of the calculation, the electron-nuclear and Hartree energies can be isolated with

Een =2 (EMad - Enn)

and )
Fy = §(EC — Fen).

Finally, the total energy is
E:T8+EC+EXC7

where Fy. is obtained either by integrating the exchange-correlation energy density, or in
the case of exact exchange, the explicit calculation of the Fock exchange integral. The
energy from the external magnetic fields in the muffin-tins, bfcmt, is always removed from
the total since these fields are non-physical: their field lines do not close. The energy of
the physical external field, bfieldc, is also not included in the total because this field, like
those in the muffin-tins, is used for breaking spin symmetry and taken to be infintesimal.
If this field is intended to be finite, then the associated energy, engybext, should be added
to the total by hand. See potxc, exxengy and related subroutines.

REVISION HISTORY:

Created May 2003 (JKD)

7.17 energyfdu (Source File: energyfdu.f90)

INTERFACE:
subroutine energyfdu
USES:

use modmain
use moddftu
use modmpi

DESCRIPTION:

Calculates the energies of radial functions to be used to calculate the Slater integrals. By
convention those energies are chosen to be the ones at the center of the band.

REVISION HISTORY:

Created April 2008 (F. Cricchio)
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7.18 erf (Source File: erf.f90)

INTERFACE:
real(8) function erf(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the error function erf(x) using a rational function approximation. This procedure
is numerically stable and accurate to near machine precision.

REVISION HISTORY:

Modified version of a NSWC routine, April 2003 (JKD)

7.19 eulerrot (Source File: eulerrot.f90)

INTERFACE:
subroutine eulerrot(ang,rot)
INPUT/OUTPUT PARAMETERS:

ang : Euler angles (alpha, beta, gamma) (in,real(3))
rot : rotation matrix (out,real(3,3))

DESCRIPTION:

Given a set of Euler angles, («, 3, ), this routine determines the corresponding 3 x 3 rotation
matrix. The so-called ‘y-convention’ is taken for the Euler angles. See the routine roteuler
for details.

REVISION HISTORY:

Created January 2014 (JKD)

7.20 eveqn (Source File: eveqn.f90)

subroutine eveqn(ik,evalfv,evecfv,evecsv) USES:

use modmain

INPUT/OUTPUT PARAMETERS:
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ik : k-point number (in,integer)

evalfv : first-variational eigenvalues (out,real(nstfv))

evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))
evecsv : second-variational eigenvectors (out,complex(nstsv,nstsv))

DESCRIPTION:

Solves the first- and second-variational eigenvalue equations. See routines match, eveqnfv,
eveqgnss and eveqnsv.

REVISION HISTORY:

Created March 2004 (JKD)

7.21 eveqnfv (Source File: eveqnfv.f90)

INTERFACE:
subroutine eveqnfv(nmatp,ngp,igpig,vpc,vgpc,apwalm,evalfv,evecfv)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nmatp : order of overlap and Hamiltonian matrices (in,integer)

ngp : number of G+k-vectors for augmented plane waves (in,integer)
igpig : index from G+k-vectors to G-vectors (in,integer (ngkmax))

vpc : k-vector in Cartesian coordinates (in,real(3))

vgpc  : G+k-vectors in Cartesian coordinates (in,real(3,ngkmax))

apwalm : APW matching coefficients
(in, complex (ngkmax ,apwordmax , lmmaxapw,natmtot))
evalfv : first-variational eigenvalues (out,real(nstfv))
evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))

DESCRIPTION:

Solves the eigenvalue equation,
(H—€e0)b=0,

for the all the first-variational states of the input k-point.
REVISION HISTORY:

Created March 2004 (JKD)
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7.22 eveqnfvr (Source File: eveqnfvr.f90)

INTERFACE:
subroutine evequnfvr(nmatp,ngp,vpc,h,o0,evalfv,evecfv)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nmatp : order of overlap and Hamiltonian matrices (in,integer)

ngp : number of G+k-vectors for augmented plane waves (in,integer)
vpc : k-vector in Cartesian coordinates (in,real(3))

h,o : Hamiltonian and overlap matrices in packed or upper triangular

form (in,complex(*))
evalfv : first-variational eigenvalues (out,real(nstfv))
evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv))

DESCRIPTION:

This routine solves the first-variational eigenvalue equation for the special case when in-
version symmetry is present. In this case the Hamiltonian and overlap matrices can be
made real by using appropriate linear combinations of the local-orbitals for atoms related
by inversion symmetry. These are derived from the effect of parity and complex conjugation
on the spherical harmonics: PYj, = (=1)V},, and (YV3,,)* = (=1)"Y_,,.

REVISION HISTORY:
Created May 2011 (JKD)

7.23 factnm (Source File: factnm.f90)

INTERFACE:
real(8) function factnm(n,m)
INPUT/OUTPUT PARAMETERS:

n : input (in,integer)
m : order of multifactorial (in,integer)

DESCRIPTION:

Returns the multifactorial

nll...l = || (n —im)
N~ .
m times 120
n—im>0

for n, m > 0. n should be less than 150.

REVISION HISTORY:
Created January 2003 (JKD)
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7.24 factr (Source File: factr.f90)

INTERFACE:
real(8) function factr(n,d)
INPUT/OUTPUT PARAMETERS:

n : numerator (in,integer)
d : denominator (in,integer)

DESCRIPTION:
Returns the ratio n!/d! for n,d > 0. Performs no under- or overflow checking.

REVISION HISTORY:

Created October 2002 (JKD)

7.25 fderiv (Source File: fderiv.f90)

INTERFACE:
subroutine fderiv(m,n,x,f,g)

INPUT/OUTPUT PARAMETERS:

m : order of derivative (in,integer)

n : number of points (in,integer)

x : abscissa array (in,real(n))

f : function array (in,real(n))

g : (anti-)derivative of f (out,real(n))
DESCRIPTION:

Given function f defined on a set of points x; then if m > 0 this routine computes the mth
derivative of f at each point. If m < 0 the anti-derivative of f given by

o) = [ f(z) do

is calculated. If m = —1 then an accurate integral is computed by fitting the function
to a clamped cubic spline. When m = —3 the fast but low accuracy trapezoidal integra-
tion method is used. Simpson’s integration, which is slower but more accurate than the
trapezoidal method, is used if m = —2.

REVISION HISTORY:

Created May 2002 (JKD)
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7.26 findband (Source File: findband.f90)

INTERFACE:
subroutine findband(sol,l,k,nr,r,vr,eps,demax,e,fnd)

INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

1 : angular momentum quantum number (in,integer)

k : quantum number k, zero if Dirac eqn. is not to be used (in,integer)

nr : number of radial mesh points (in,integer)

T : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

eps : energy search tolerance (in,real)

demax : maximum allowed change from the input energy; enforced only if e < O

(in,real)

e : input energy and returned band energy (inout,real)

fnd : set to .true. if the band energy is found (out,logical)
DESCRIPTION:

Finds the band energies for a given radial potential and angular momentum. This is done
by first searching upwards in energy, starting from the input energy plus the offset energy,
until the radial wavefunction at the muffin-tin radius is zero. This is the energy at the top
of the band, denoted E;. A downward search is now performed from E; until the slope of
the radial wavefunction at the muffin-tin radius is zero. This energy, Ey, is at the bottom
of the band. The band energy is taken as (Ey + F},)/2. If either E; or E}, cannot be found
then the band energy is set to the input value.

REVISION HISTORY:

Created September 2004 (JKD)
Added two-pass loop, October 2013 (JKD)

7.27 findlambdadu (Source File: findlambdadu.f90)

INTERFACE:
subroutine findlambdadu(is,l,ufix,lambda0,lambda)

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)

1 : angular momentum (in,integer)

ufix : fixed U (in,integer)

lambdaO : starting value for screening length (inout,real)
lambda : screening length corresponding to fixed U (out,real)
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DESCRIPTION:

Find the screening length corresponding to a fixed value of U by using the half-interval
method in the first few steps and then the more efficient secant method. For U = 0 the
code automatically sets the screening length to lambdamax = 50. This value is enough to
get F¥) ~ 1073 corresponding to U ~ 0 (that perfectly mimics a bare DFT calculation).
However the code is stable up to lambdamax ~ 200 thanks to improvement of spline.

REVISION HISTORY:

Created July 2009 (Francesco Cricchio)

7.28 findngkmax (Source File: findngkmax.f90)

INTERFACE:
subroutine findngkmax(nkpt,vkc,nspnfv,vqcss,ngvec,vgc,gkmax,ngkmax)
INPUT/OUTPUT PARAMETERS:

nkpt : number of k-points (in,integer)

vkc : k-point vectors in Cartesian coordinates (in,real(3,nkpt))

nspnfv : number of first-variational spin components: 1 normal case, 2 for
spin-spiral case (in,integer)

vqcss @ spin-spiral g-vector, not referenced if nspnfv=1 (in,integer)
ngvec : number of G-vectors (in,integer)

vgc : G-vectors in Cartesian coordinates (in,real(3,ngvec))

gkmax : maximum allowed |G+k| (in,real)

ngkmax : maximum number of G+k-vectors over all k-points (out,integer)

DESCRIPTION:

Determines the largest number of G + k-vectors with length less than gkmax over all the
k-points. This variable is used for allocating arrays.

REVISION HISTORY:

Created October 2004 (JKD)
Modified, August 2012 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

7.29 findprimcell (Source File: findprimcell.f90)

INTERFACE:

subroutine findprimcell
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USES:
use modmain

DESCRIPTION:

This routine finds the smallest primitive cell which produces the same crystal structure
as the conventional cell. This is done by searching through all the vectors which connect
atomic positions and finding those which leave the crystal structure invariant. Of these, the
three shortest which produce a non-zero unit cell volume are chosen.

REVISION HISTORY:

Created April 2007 (JKD)

7.30 findswidth (Source File: findswidth.f90)

INTERFACE:
subroutine findswidth
USES:

use modmain

DESCRIPTION:

Calculates the smearing width from the k-point density, Vz/ng; the valence band width,
W and an effective mass parameter, m*; according to

V2w <3VBZ)1/3

m*

g =
4 ng

The valence bandwidth is determined by stepping down in energy from the Fermi level until
a gap larger than a given tolerance is found. This method was presented in T. Bjorkman
and O. Granés, Int. J. Quant. Chem. DOI: 10.1002/qua.22476.

REVISION HISTORY:

Created April 2010 (Torbjorn Bjorkman and JKD)

7.31 findsymecrys (Source File: findsymecrys.f90)

INTERFACE:
subroutine findsymcrys

USES:
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use modmain
use modmpi
use modtest

DESCRIPTION:

Finds the complete set of symmetries which leave the crystal structure (including the mag-
netic fields) invariant. A crystal symmetry is of the form {ag|ag|t}, where t is a translation
vector, ar is a spatial rotation operation and ag is a global spin rotation. Note that the
order of operations is important and defined to be from right to left, i.e. translation followed
by spatial rotation followed by spin rotation. In the case of spin-orbit coupling ag = ag.
In order to determine the translation vectors, the entire atomic basis is shifted so that the
first atom in the smallest set of atoms of the same species is at the origin. Then all dis-
placement vectors between atoms in this set are checked as possible symmetry translations.
If the global variable tshift is set to .false. then the shift is not performed. See L. M.
Sandratskii and P. G. Guletskii, J. Phys. F: Met. Phys. 16, L43 (1986) and the routine
findsym.

REVISION HISTORY:

Created April 2007 (JKD)

7.32 findsym (Source File: findsym.f90)

INTERFACE:
subroutine findsym(apll,apl2,nsym,lspl,lspn,iea)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

apll : first set of atomic positions in lattice coordinates
(in,real (3,maxatoms,maxspecies))
apl2 : second set of atomic positions in lattice coordinates
(in,real (3,maxatoms,maxspecies))
nsym : number of symmetries (out,integer)
1spl : spatial rotation element in lattice point group for each symmetry

(out,integer(48))

lspn : spin rotation element in lattice point group for each symmetry
(out,integer(48))

iea : equivalent atom index for each symmetry

(out,integer(iea(natmmax,nspecies,48))

DESCRIPTION:
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Finds the symmetries which rotate one set of atomic positions into another. Both sets of
positions differ only by a translation vector and have the same muffin-tin magnetic fields
(stored in the global array bfcmt). Any symmetry element consists of a spatial rotation of
the atomic position vectors followed by a global magnetic rotation: {ag|agr}. In the case
of spin-orbit coupling avg = ag. The symmetries are returned as indices of elements in the
Bravais lattice point group. An index to equivalent atoms is stored in the array iea.

REVISION HISTORY:

Created April 2007 (JKD)
Fixed use of proper rotations for spin, February 2008 (L. Nordstrom)

7.33 findsymlat (Source File: findsymlat.f90)

INTERFACE:
subroutine findsymlat
USES:

use modmain

DESCRIPTION:

Finds the point group symmetries which leave the Bravais lattice invariant. Let A be the
matrix consisting of the lattice vectors in columns, then

g=ATA

is the metric tensor. Any 3 x 3 matrix S with elements —1, 0 or 1 is a point group symmetry
of the lattice if det(S) is —1 or 1, and

STgS =g.
The first matrix in the set returned is the identity.

REVISION HISTORY:

Created January 2003 (JKD)
Removed arguments and simplified, April 2007 (JKD)

7.34 flushifc (Source File: flushifc.f90)

INTERFACE:
subroutine flushifc(fnum)

INPUT/OUTPUT PARAMETERS:
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fnum : unit specifier for file (in,integer)

DESCRIPTION:

Interface to the Fortran flush statement. Some compilers do not support the flush com-
mand, which is very useful for keeping small formatted files up-to-date on the disk. The
routine implimented below is a machine-independent emulation of flush, but may be re-
placed with the intrinsic command if preferred.

REVISION HISTORY:

Created September 2002 (JKD)

7.35 force (Source File: force.f90)

INTERFACE:
subroutine force
USES:

use modmain
use modtest
use modmpi

DESCRIPTION:

Computes the various contributions to the atomic forces. In principle, the force acting on
a nucleus is simply the gradient at that site of the classical electrostatic potential from the
other nuclei and the electronic density. This is a result of the Hellmann-Feynman theorem.
However because the basis set is dependent on the nuclear coordinates and is not complete,
the Hellman-Feynman force is inacurate and corrections to it are required. The first is the
core correction which arises because the core wavefunctions were determined by neglecting
the non-spherical parts of the Kohn-Sham potential vs. Explicitly this is given by

F?ore = / US(r)vpgore(r) dI‘
MT,

for atom a. The second, which is the incomplete basis set (IBS) correction, is due to the
position dependence of the APW functions, and is derived by considering the change in
total energy if the eigenvector coefficients were fixed and the APW functions themselves
were changed. This would result in changes to the first-variational Hamiltonian and overlap
matrices given by

: o 1 e —i(G-G')r
SHE g = i(G — G) (Hc+k,@+k ~5(G+1k) (G’ +K)Oa(G ~ G)e ¢~ >

00g,a = (G — G') (O%Jrk,curk — (:)Q(G — G’)e—i(G—G’)-ra>
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where both G and G’ run over the APW indices; ©, is the form factor of the smooth
step function for muffin-tin «; and H® and O¢ are the muffin-tin Hamiltonian and overlap
matrices, respectively. The APW-local-orbital part is given by

6H817G’ - Z(G + k)Hg"-s-k,G’-i-k
50%,G’ == Z(G’ + k)OaG+k,G/+k
where G runs over the APW indices and G’ runs over the local-orbital indices. There is

no contribution from the local-orbital-local-orbital part of the matrices. We can now write
the IBS correction in terms of the basis of first-variational states as

= 3 U (B - 008 c).
G,G’

where b is the first-variational eigenvector. Finally, the F%k matrix elements can be
multiplied by the second-variational coefficients, and contracted over all indices to obtain
the IBS force:

B = 3w S e 3 ek ok ¢ /M ()9 [plr) — (1] i
k lo 4] a

where ¥ are the second-variational coefficients, wy are the k-point weights, ny are the

occupancies. See routines hmlaa, olpaa, hmlalo, olpalo, energy, eveqn and gencfun.

REVISION HISTORY:

Created January 2004 (JKD)
Fixed problem with second-variational forces, May 2008 (JKD)

7.36 forcek (Source File: forcek.f90)

INTERFACE:
subroutine forcek(ik)
USES:

use modmain

DESCRIPTION:

Computes the k-dependent contribution to the incomplete basis set (IBS) force. See the
calling routine force for a full description.

REVISION HISTORY:

Created June 2006 (JKD)
Updated for spin-spiral case, May 2007 (Francesco Cricchio and JKD)
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7.37 fsmfield (Source File: fsmfield.f90)

INTERFACE:
subroutine fsmfield
USES:

use modmain

DESCRIPTION:

Updates the effective magnetic field, Brgy, required for fixing the spin moment to a given
value, Mpgym. This is done by adding a vector to the field which is proportional to the
difference between the moment calculated in the ith self-consistent loop and the required
moment:

Bl = Bhsy + A (M’ — Mpsy)
where A is a scaling factor.
REVISION HISTORY:

Created March 2005 (JKD)

7.38 fsmooth (Source File: fsmooth.f90)

INTERFACE:
subroutine fsmooth(m,n,ld,f)

INPUT/OUTPUT PARAMETERS:

m : number of 3-point running averages to perform (in,integer)
n : number of point (in,integer)
1d : leading dimension (in,integer)
f : function array (inout,real(ld,n))
DESCRIPTION:

Removes numerical noise from a function by performing m successive 3-point running av-
erages on the data. The endpoints are kept fixed.

REVISION HISTORY:

Created December 2005 (JKD)
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7.39 fyukawaO (Source File: fyukawa0.f90)

INTERFACE:
real(8) function fyukawaO(is,11,k)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)

1 : an angular momentum (in,integer)
k : order of Slater parameter (in,integer)
DESCRIPTION:

Calculates the Slater parameters in the unscreened case. See Phys. Rev. B 52, 1421 (1995)
and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created April 2008 (LN)
Modified and tested July 2008 (LN and FC)

7.40 fyukawa (Source File: fyukawa.f90)

INTERFACE:
real(8) function fyukawa(is,l,k,lambda)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

is : species type (in,integer)
1 : an angular momentum (in,integer)
k : order of Slater parameter (in,integer)

lambda : screening length of Yukawa potential (in,real)

DESCRIPTION:

Calculates the Slater parameters using a screened Yukawa potential. See Phys. Rev. B 52,
1421 (1995) and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created April 2008 (Lars Nordstrom)
Modified and tested July 2008 (LN and FC)
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7.41 gaunt (Source File: gaunt.f90)

INTERFACE:
real(8) function gaunt(11,12,13,m1,m2,m3)
INPUT/OUTPUT PARAMETERS:

11, 12, 13 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the Gaunt coefficient given by

251+1)(2z2+1)(213+1)]5<z1 I z3>< A 53>'

I lo I3y — (_1ym (
<Ym1|Ym2|Ym3>_( 1) A 0 0 O —mip M2 M3

Suitable for I; less than 50.

REVISION HISTORY:

Created November 2002 (JKD)

7.42 gauntyry (Source File: gauntyry.fo0)

INTERFACE:
complex(8) function gauntyry(11,12,13,ml,m2,m3)
INPUT/OUTPUT PARAMETERS:

11, 12, 13 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the complex Gaunt-like coefficient given by (V! |R2 |Y]s ), where Y, and Ry
are the complex and real spherical harmonics, respectively. Suitable for I; less than 50. See
routine genrlm.

REVISION HISTORY:

Created November 2002 (JKD)
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7.43 gcd (Source File: gcd.f90)

INTERFACE:
integer function gcd(x,y)
INPUT/OUTPUT PARAMETERS:

x : first integer (in,integer)
y : second integer (in,integer)

DESCRIPTION:
Computes the greatest common divisor (GCD) of two integers using Euclid’s algorithm.

REVISION HISTORY:

Created September 2004 (JKD)

7.44 genafieldt (Source File: genafieldt.f90)

INTERFACE:
subroutine genafieldt
USES:

use modmain
use modtddft

DESCRIPTION:

Generates a time-dependent vector potential, A(t), representing a laser pulse and stores it
in AFIELDT.OUT. The vector potential is contructed from a sum of sinusoidal waves, each
modulated with a Gaussian envelope function:

e—(t—t0)2/20'2
oV 2

Seven real numbers have to be specified for each pulse, namely the vector amplitude Ay,
peak time tg, full-width at half-maximum d = 2v/21n 20, frequency w and phase ¢.

A(t) = Ay sin(w(t — to) + ¢).

REVISION HISTORY:

Created May 2012 (K. Krieger)
Modified, January 2014 (S. Sharma)
Modified, February 2014 (JKD)
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7.45 genapwfr (Source File: genapwfr.f90)

INTERFACE:
subroutine genapwfr
USES:

use modmain

DESCRIPTION:

Generates the APW radial functions. This is done by integrating the scalar relativistic
Schrodinger equation (or its energy deriatives) at the current linearisation energies using
the spherical part of the Kohn-Sham potential. The number of radial functions at each
[-value is given by the variable apword (at the muffin-tin boundary, the APW functions
have continuous derivatives up to order apword — 1). Within each [, these functions are
orthonormalised with the Gram-Schmidt method. The radial Hamiltonian is applied to the
orthonormalised functions and the results are stored in the global array apwfr.

REVISION HISTORY:

Created March 2003 (JKD)
Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD)

7.46 gencfun (Source File: gencfun.f90)

INTERFACE:
subroutine gencfun
USES:

use modmain

DESCRIPTION:

Generates the smooth characteristic function. This is the function which is 0 within the
muffin-tins and 1 in the intersitial region and is constructed from radial step function form
factors with G < Gpax. The form factors are given by

4T R3
i 393 G=0
0i(G) = { T 0 < G < Grpax
0 G > Gax

where R; is the muffin-tin radius of the ith species and €2 is the unit cell volume. Therefore
the characteristic function in G-space is

é(G) = 5(;,0 — Z exp(—iG . I'Zj)él(G),

where r;; is the position of the jth atom of the ith species.

REVISION HISTORY:
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Created January 2003 (JKD)

7.47 gencore (Source File: gencore.f90)

INTERFACE:
subroutine gencore
USES:

use modmain

DESCRIPTION:

Computes the core radial wavefunctions, eigenvalues and densities. The radial Dirac equa-
tion is solved in the spherical part of the Kohn-Sham potential to which the atomic poten-
tial has been appended for » > Ryrp. In the case of spin-polarised calculations, and when
spincore is set to .true., the Dirac equation is solved in the spin-up and -down potentials
created from the Kohn-Sham scalar potential and magnetic field magnitude, with the occu-
pancy divided equally between up and down. The up and down densities determined in this
way are added to both the scalar density and the magnetisation in the routine rhocore.
Note that this procedure is a simple, but inexact, approach to solving the radial Dirac
equation in a magnetic field.

REVISION HISTORY:

Created April 2003 (JKD)
Added polarised cores, November 2009 (JKD)

7.48 genfdu (Source File: genfdu.f90)

INTERFACE:

subroutine genfdu(i,u,j,f)
USES:

use moddftu

INPUT/OUTPUT PARAMETERS:

: DFT+U entry (in,integer)
: parameter U (inout,real)
: parameter J (inout,real)
: Slater parameters (inout,real)

FhoC g b
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DESCRIPTION:

Calculate the Slater parameters for DF'T+U calculation with different approaches, see Phys.
Rev. B 80, 035121 (2009). The relations among Slater and Racah parameters are from E.U.
Condon and G.H. Shortley, The Theory of Atomic Spectra, The University Press, Cambridge
(1935).

REVISION HISTORY:
Created July 2008 (Francesco Cricchio)

7.49 genfdufr (Source File: genfdufr.f90)

INTERFACE:
subroutine genfdufr
USES:

use modmain
use moddftu

DESCRIPTION:

Generates the radial functions used to calculate the Slater integrals through a Yukawa
potential.

REVISION HISTORY:

Created April 2008 from genapwfr (Francesco Cricchio)

7.50 gengkvec (Source File: gengkvec.f90)

INTERFACE:
subroutine gengkvec(ngvec,ivg,vgc,vkl,vkc,gkmax,ngkmax,ngk,igkig,vgkl,vgkc)
INPUT/OUTPUT PARAMETERS:

ngvec : number of G-vectors (in,integer)

ivg : G-vector integer coordinates (in,integer(3,ngvec))

vge : G-vectors in Cartesian coordinates (in,real(3,ngvec))

vkl : k-point vector in lattice coordinates (in,real(3))

vke : k-point vector in Cartesian coordinates (in,real(3))
gkmax : G+k-vector cut-off (in,real)

ngkmax : maximum number of G+k-vectors (in,integer)

ngk : number of G+k-vectors returned (out,integer)

igkig : index from G+k-vectors to G-vectors (out,integer(ngkmax))
vgkl : G+k-vectors in lattice coordinates (out,real(3,ngkmax))
vgkc  : Gt+k-vectors in Cartesian coordinates (out,real(3,ngkmax))
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DESCRIPTION:

Generates a set of G + k-vectors for the input k-point with length less than gkmax.

REVISION HISTORY:

Created April 2003 (JKD)
Removed spherical coordinate generation, May 2010 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

7.51 gengvec (Source File: gengvec.f90)

INTERFACE:
subroutine gengvec(ngridg,ngtot,intgv,bvec,gmaxvr,ngvec,ivg,ivgig,igfft,vgc,gc)
INPUT/OUTPUT PARAMETERS:

ngridg : G-vector grid sizes (in,integer(3))

ngtot : total number of G-vectors (in,integer)

intgv : integer grid intervals for each direction (in,intgv(2,3))
bvec : reciprocal lattice vectors (in,real(3,3))

gmaxvr : G-vector cut-off (in,gmaxvr)

ngvec : number of G-vectors with G < gmaxvr (out,integer)

ivg : G-vector integer coordinates (out,integer(3,ngtot))

ivgig : map from (i1,i2,i3) to G-vector index (out,integer(intgv(1l,1):
intgv(2,1) ,intgv(1,2) :intgv(2,2) ,intgv(1,3) :intgv(2,3)))
igfft : map from G-vector array to FFT array (out,integer(ngtot))

vgc : G-vectors in Cartesian coordinates (out,real(3,ngtot))
gc : length of G-vectors (out,real(ngtot))
DESCRIPTION:

Generates a set of G-vectors used for the Fourier transform of the charge density and
potential and sorts them according to length. Integers corresponding to the vectors in
lattice coordinates are stored, as well as the map from these integer coordinates to the
G-vector index. A map from the G-vector set to the standard FFT array structure is also
generated. Finally, the number of G-vectors with magnitude less than gmaxvr is determined.

REVISION HISTORY:

Created October 2002 (JKD)
Removed modmain and added arguments, September 2012 (JKD)
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7.52 genidxlo (Source File: genidxlo.f90)

INTERFACE:
subroutine genidxlo
USES:

use modmain

DESCRIPTION:

Generates an index array which maps the local-orbitals in each atom to their locations in
the overlap or Hamiltonian matrices. Also finds the total number of local-orbitals.

REVISION HISTORY:

Created June 2003 (JKD)

7.53 genlofr (Source File: genlofr.f90)

INTERFACE:
subroutine genlofr
USES:

use modmain

DESCRIPTION:

Generates the local-orbital radial functions. This is done by integrating the scalar relativistic
Schrodinger equation (or its energy deriatives) at the current linearisation energies using the
spherical part of the Kohn-Sham potential. For each local-orbital, a linear combination of
lorbord radial functions is constructed such that its radial derivatives up to order lorbord—
1 are zero at the muffin-tin radius. This function is normalised and the radial Hamiltonian
applied to it. The results are stored in the global array lofr.

REVISION HISTORY:

Created March 2003 (JKD)
Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD)
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7.54 genpmatc (Source File: genpmatc.f90)

INTERFACE:
subroutine genpmatc
USES:

use modmain
use modmpi
use modtddft

DESCRIPTION:

Generates the momentum matrix, P, in the ‘Cartesian’ basis. The momentum matrix
elements in the second-variational basis can then be obtained by

Pij = CIPch,
where c; is the ith second-variational eigenvector. See also genpmat.

REVISION HISTORY:

Created May 2012 (K. Krieger)

7.55 genpmat (Source File: genpmat.f90)

INTERFACE:

subroutine genpmat (ngp,igpig,vgpc,wfmt,wfir,pmat)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer(nspnfv))
igpig : index from G+p-vectors to G-vectors (in,integer (ngkmax,nspnfv))
vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax,nspnfv))
wfmt : muffin-tin wavefunction in spherical harmonics

(in, complex (lmmaxvr,nrcmtmax,natmtot,nspinor,nstsv))
wfir : interstitial wavefunction in plane wave basis

(in, complex (ngkmax,nspinor,nstsv))
pmat : momentum matrix elements (out,complex(3,nstsv,nstsv))

DESCRIPTION:

Calculates the momentum matrix elements

P = / d3r U (r) (—iV +

2 X V0] W),
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where V; is the Kohn-Sham effective potential. The second term in the brackets is only
calculated if spin-orbit coupling is enabled. See Rathgen and Katsnelson, Physica Scripta
T109, 170 (2004).

REVISION HISTORY:

Created November 2003 (Sharma)

Fixed bug found by Juergen Spitaler, September 2006 (JKD)
Added spin-orbit correction, July 2010 (JKD)

Fixed bug found by Koichi Kitahara, January 2014 (JKD)

7.56 genppts (Source File: genppts.f90)

INTERFACE:

subroutine genppts(tfbz,nsym,sym,ngridp,npptnr,epslat,bvec,boxl,nppt,ipmap, &
ipmapnr,ivp,vpl,vpc,wppt,wpptnr)

INPUT/OUTPUT PARAMETERS:

tfbz : .true. if vpl and vpc should be mapped to the first Brillouin zone
(in,logical)

nsym : number of point group symmetries used for reduction, set to 1 for
no reduction (in,integer)

sym : symmetry matrices in lattice coordinates (in,integer(3,3,*))

ngridp : p-point grid sizes (in,integer(3))
npptnr : number of non-reduced p-points: ngridp(1)*ngridp(2)*ngridp(3)
(in,integer)

epslat : tolerance for determining identical vectors (in,real)

bvec : reciprocal lattice vectors (in,real(3,3))

box1l : corners of box containing p-points in lattice coordinates, the
first vector is the origin (in,real(3,4))

nppt : total number of p-points (out,integer)

ipmap : map from integer grid to reduced p-point index

(out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1))
ipmapnr : map from integer grid to non-reduced p-point index
(out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1))

ivp : integer coordinates of the p-points
(out,integer(3,ngridp(1)*ngridp(2)*ngridp(3)))
vpl : lattice coordinates of each p-point
(out,real (3,ngridp(1)*ngridp(2)*ngridp(3)))
vpc : Cartesian coordinates of each p-point
(out,real (3,ngridp(1)*ngridp(2)*ngridp(3)))
wppt : weights of each reduced p-point
(out,real (ngridp(1)*ngridp(2)*ngridp(3)))
wpptnr : weight of each non-reduced p-point (out,real)
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DESCRIPTION:

This routine is used for generating k-point or ¢g-point sets. Since these are stored in global
arrays, the points passed to this and other routines are referred to as p-points. In lattice
coordinates, the p vectors are given by

i1/
p=(B2-B1 B3-B; Bys—B;| |iza/n2 | +Bs

i3/n3
where 4; runs from 0 to n; — 1, and the B vectors define the corners of a box with B; as
the origin. If tfbz is .true. then each vpl vector is mapped to the first Brillouin zone. If
tfbz is .false. and nsym > 0, then the coordinates of each vpl are mapped to the [0,1)
interval. The p-point weights are stored in wppt and the array ipmap contains the map from
the integer coordinates to the reduced index.

REVISION HISTORY:

Created August 2002 (JKD)

Updated April 2007 (JKD)

Added mapping to the first Brillouin zone, September 2008 (JKD)
Made independent of modmain, February 2010 (JKD)

7.57 genrlm (Source File: genrlm.f90)

INTERFACE:
subroutine genrlm(lmax,tp,rlm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

tp : (theta, phi) coordinates (in,real(2))
rlm : array of real spherical harmonics (out,real((lmax+1)*%2))
DESCRIPTION:

Generates a sequence of real spherical harmonics evaluated at angles (6, ¢) for 0 < I < lyax.
The values are returned in a packed array rlm indexed with j = (Il + 1) + m + 1. Real
spherical harmonics are defined by

VER{Yim(0,0)} m >0
Rin(6,9) = { V2S{Yi(0,6)} m <0,
§R{Ylm(ev ¢>} m =0
where Y}, are the complex spherical harmonics. These functions are orthonormal and
complete and may be used for expanding real-valued functions on the sphere. This routine
is numerically stable and accurate to near machine precision for [ < 50. See routine genylm.

REVISION HISTORY:
Created March 2004 (JKD)
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7.58 genrmesh (Source File: genrmesh.f90)

INTERFACE:
subroutine genrmesh
USES:

use modmain
use modvars

DESCRIPTION:

Generates the coarse and fine radial meshes for each atomic species in the crystal. Also
determines which points are in the inner part of the muffin-tin using the value of fracinr.

REVISION HISTORY:

Created September 2002 (JKD)

7.59 gensdmat (Source File: gensdmat.f90)

INTERFACE:

subroutine gensdmat(evecsv,sdmat)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))
sdmat : spin density matrices (out,complex(nspinor,nspinor,nstsv))

DESCRIPTION:
Computes the spin density matrices for a set of second-variational states.

REVISION HISTORY:

Created September 2008 (JKD)

75



7.60 gensfacgp (Source File: gensfacgp.f90)

INTERFACE:
subroutine gensfacgp(ngp,vgpc,ld,sfacgp)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
vgpc : Gtp-vectors in Cartesian coordinates (in,real(3,*))
14 : leading dimension (in,integer)

sfacgp : structure factors of G+p-vectors (out,complex(ld,natmtot))

DESCRIPTION:

Generates the atomic structure factors for a set of G + p-vectors:
So(G +p) =exp(i(G + p) - ro),
where r,, is the position of atom «.

REVISION HISTORY:

Created January 2003 (JKD)

7.61 genshtmat (Source File: genshtmat.f90)

INTERFACE:
subroutine genshtmat
USES:

use modmain

DESCRIPTION:

Generates the forward and backward spherical harmonic transformation (SHT) matrices
using the spherical covering set produced by the routine sphcover. These matrices are
used to transform a function between its (I, m)-expansion coefficients and its values at the
(0, ¢) points on the sphere.

REVISION HISTORY:

Created April 2003 (JKD)
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7.62 genspchi0 (Source File: genspchi0.f90)

INTERFACE:
subroutine genspchiO(ikp,scsr,vqpl,gqc,ylmgq,sfacgq,chil)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)

scsr : scissor correction (in,real)

vgpl : input g-point in lattice coordinates (in,real(3))

gqc : length of G+g-vectors (in,real(ngrf))

ylmgq : spherical harmonics of the G+gq-vectors (in,complex(lmmaxvr,ngrf))
sfacgq : structure factors of G+q-vectors (in,complex(ngrf,natmtot))

chiO : spin-dependent Kohn-Sham response function in G-space

(out,complex(ngrf,4,ngrf,4,nwrf))
DESCRIPTION:

Computes the spin-dependent Kohn-Sham response function:

0pas(r,w)
’ _ )
XapB,o' B (I‘, r )w) = 51)0/5'(1",(«0)
1 iK|pga () |7K') (GK | par g (1)) |1k
:“"jgj(fhc_}ﬁk0< IZE ()|‘ ) (K| ﬁ( )|ik)
Nk w+ (g5 — gjwr) +in

where « and (3 are spin-coordinates, Ny is the number of k-points, f;x are the occupancies, v
is the Kohn-Sham potential and p is the spin-density operator. With translational symmetry
in mind, we adopt the following convention for its Fourier transform:
1 ) (Y -
Xa,é’,o/ﬁ’(Gﬂ G/, q, w) = 5 /dgT d37‘/ e (G+a) reZ(G ta)r Xocﬁ,oc’ﬂ’(ra I'/, W).

Let
— 3,. (G .
25 peal @) = [Ere @O o)
then the response function in G-space can be written

ik,jk+q ik,jk+q
W+ (€ik — €jk+q) +

A ()| W (el
, 1
Xaﬁ,a'ﬁ’(G7G7q7w>:m. Z (fzk_f]k) .
ik,jk+q
REVISION HISTORY:

Created March 2012 (SS and JKD)
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7.63 genvclijji (Source File: genvclijji.f90)

INTERFACE:

subroutine genvclijji(ikp,vclijji)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vclijji : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt))

DESCRIPTION:
Calculates the Coulomb matrix elements of the type (i — jj — 7).

REVISION HISTORY:

Created June 2008 (Sharma)

7.64 genvclijjk (Source File: genvclijjk.fo0)

INTERFACE:

subroutine genvclijjk(ikp,vclijjk)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vclijjk : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt))

DESCRIPTION:
Calculates Coulomb matrix elements of the type (i — jj — k).

REVISION HISTORY:

Created 2008 (Sharma)
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7.65 genveedu (Source File: genveedu.f90)

INTERFACE:
subroutine genveedu(i,u,j,vee)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

i : DFT+U entry (in,integer)
u : parameter U (out,real)
j : parameter J (out,real)

vee : Coulomb matrix elements (out,real(-lmaxdm:lmaxdm,-lmaxdm:Ilmaxdm,
-lmaxdm:1lmaxdm, -1maxdm: lmaxdm))

DESCRIPTION:

Calculates the Coulomb matrix elements used in DFT+U calculations. See Phys. Rev. B
52, 5467 (1995).

REVISION HISTORY:

Created November 2007 (FC,JKD,FB,LN)
Modified July 2009 (FC)

7.66 genvmatmt (Source File: genvmatmt.f90)

INTERFACE:
subroutine genvmatmt
USES:

use modmain
use moddftu

DESCRIPTION:

Calculate the DFT+U potential matrix to be used in the second-variational step. See Phys.
Rev. B 52, 5467 (1995) and Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:

Created November 2007 (FC,FB,LN,JKD)
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7.67 genvsig (Source File: genvsig.f90)

INTERFACE:
subroutine genvsig
USES:

use modmain

DESCRIPTION:

Generates the Fourier transform of the Kohn-Sham effective potential in the intersitial
region. The potential is first multiplied by the characteristic function which zeros it in the
muffin-tins. See routine gencfun.

REVISION HISTORY:

Created January 2004 (JKD)

7.68 genwfsv (Source File: genwfsv.f90)

INTERFACE:
subroutine genwfsv(tsh,tgp,nst,idx,ngp,igpig,apwalm,evecfv,evecsv,wfmt,ld,wfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tsh : .true. if wfmt should be in spherical harmonic basis (in,logical)

tgp : .true. if wfir should be in G+p-space, otherwise in real-space
(in,logical)

nst : number of states to be calculated (in,integer)

idx : index to states which are to be calculated (in,integer(nst))

ngp : number of G+p-vectors (in,integer(nspnfv))

igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv))

apwalm : APW matching coefficients

(in, complex (ngkmax ,apwordmax , lmmaxapw,natmtot ,nspnfv))
evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv))
evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))

wimt : muffin-tin part of the wavefunctions for every state in spherical
coordinates (out,complex(lmmaxvr,nrcmtmax,natmtot,nspinor,nst))

1d : leading dimension, at least ngkmax if tgp is .true. and ngtot if
tgp is .false. (in,integer)

wfir : interstitial part of the wavefunctions for every state

(out,complex(1ld,nspinor,nst))
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DESCRIPTION:

Calculates the second-variational spinor wavefunctions in both the muffin-tin and interstitial
regions for every state of a particular k-point. The wavefunctions in both regions are stored
on a real-space grid. A coarse radial mesh is assumed in the muffin-tins with with angular
momentum cut-off of lmaxvr. If tocc is .true., then only those states with occupancy
greater than epsocc are calculated.

REVISION HISTORY:

Created November 2004 (Sharma)
Updated for spin-spirals, June 2010 (JKD)

7.69 genwiq2 (Source File: genwiq2.f90)

INTERFACE:
subroutine genwiq2
USES:

use modmain
use modtest

DESCRIPTION:

The Fock matrix elements

W (r) - W (0) Wl () - W (r)
NL __ ik Ik’ J /
Vijk :%;/ v — 1] dr dr

contain a divergent term in the sum over k’ which behaves as 1/¢%, where q = k — k’ is in
the first Brillouin zone. The resulting convergence with respect to the number of discrete
g-points is very slow. This routine computes the weights

1
wqiE/ —dq, (1)
Vi

where the integral is over the small parallelepiped centered on q;, so that integrals over the
first Brillouin zone of the form fa)
q
I'= | ~—=dq,
Bz 4
can be approximated by the sum

I'~ quz'f((h')

which converges rapidly with respect to the number of ¢-points for smooth functions f.
The integral in is determined by evaluating it numerically on increasingly finer grids
and extrapolating to the continuum. Agreement with Mathematica to at least 10 significant
figures.

REVISION HISTORY:
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Created August 2004 (JKD,SS)

7.70 genylm (Source File: genylm.f90)

INTERFACE:
subroutine genylm(lmax,tp,ylm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

tp : (theta, phi) coordinates (in,real(2))
ylm : array of spherical harmonics (out,complex((lmax+1)**2))
DESCRIPTION:

Generates a sequence of spherical harmonics, including the Condon-Shortley phase, eval-
uated at angles (0,¢) for 0 < [ < lpax. The values are returned in a packed array ylm
indexed with j = [(l +1) +m + 1. The algorithm of Masters and Richards-Dinger is used,
Geophys. J. Int. 135, 307 (1998). This routine is numerically stable and accurate to near
machine precision for [ < 50.

REVISION HISTORY:

Created March 2004 (JKD)
Improved stability, December 2005 (JKD)

7.71 genylmg (Source File: genylmg.f90)

INTERFACE:
subroutine genylmg
USES:

use modmain

DESCRIPTION:

Generates a set of spherical harmonics, Ylm(G), with angular momenta up to lmaxvr for
the set of G-vectors.

REVISION HISTORY:

Created June 2003 (JKD)
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7.72 genzrho (Source File: genzrho.f90)

INTERFACE:
subroutine genzrho(tsh,tspc,wfmtl,wfirl,wfmt2,wfir2,zrhomt,zrhoir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tsh : .true. if the muffin-tin density is to be in spherical harmonics
(in,logical)
tspc : .true. if the density should be contracted over spin (in,logical)
wimtl : muffin-tin part of wavefunction 1 in spherical coordinates
(in, complex (lmmaxvr ,nrcmtmax,natmtot,nspinor))
wfirl : interstitial wavefunction 1 (in,complex(ngtot))
wimt2 : muffin-tin part of wavefunction 2 in spherical coordinates
(in, complex (lmmaxvr,nrcmtmax,natmtot,nspinor))
wfir2 : interstitial wavefunction 2 (in,complex(ngtot))

zrhomt : muffin-tin charge density in spherical harmonics/coordinates
(out,complex (lmmaxvr,nrcmtmax,natmtot))
zrhoir : interstitial charge density (out,complex(ngtot))

DESCRIPTION:

Calculates the complex overlap charge density from two input wavefunctions:

p(r) = Wi (r) - Ua(r).

Note that the muffin-tin wavefunctions are provided in spherical coordinates and the re-
turned density is either in terms of spherical harmonic coefficients or spherical coordinates
when tsh is .true. or .false., respectively.

REVISION HISTORY:

Created November 2004 (Sharma)

7.73 getevecfv (Source File: getevecfv.f90)

INTERFACE:
subroutine getevecfv(vpl,vgpl,evecfv)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:
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vpl : p-point vector in lattice coordinates (in,real(3))
vgpl : G+p-vectors in lattice coordinates (out,real(3,ngkmax,nspnfv))
evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv,nspnfv))

DESCRIPTION:

Reads in a first-variational eigenvector from file. If the input k-point, p, is not in the
reduced set, then the eigenvector of the equivalent point is read in and the required rota-
tion/translation operations applied.

REVISION HISTORY:

Created Feburary 2007 (JKD)
Fixed transformation error, October 2007 (JKD, Anton Kozhevnikov)
Fixed 1l.0. rotation, June 2010 (A. Kozhevnikov)

7.74 getvclijji (Source File: getvclijji.fo0)

INTERFACE:

subroutine getvclijji(ikp,vclijji)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vclijji : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt))

DESCRIPTION:
Retrieves Coulomb matrix elements of the type (i — jj — ) from the file VCLIJJI.QUT.

REVISION HISTORY:

Created 2009 (Sharma)

7.75 getvclijjk (Source File: getvclijjk.f90)

INTERFACE:
subroutine getvclijjk(ikp,vclijjk)
USES:

use modmain
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INPUT/OUTPUT PARAMETERS:

ikp : k-point from non-reduced set (in,integer)
vclijjk : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt))

DESCRIPTION:
Retrieves Coulomb matrix elements of the type (i — jj — k) from the file VCLIJJK.OUT.

REVISION HISTORY:

Created 2009 (Sharma)

7.76 ggair 1 (Source File: ggair 1.f90)

INTERFACE:
subroutine ggair_1(grho,g2rho,g3rho)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_1.

REVISION HISTORY:

Created November 2009 (JKD)

7.77 ggair_2a (Source File: ggair_2a.f90)

INTERFACE:
subroutine ggair_2a(g2rho,gvrho,grho2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_2a.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)
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7.78 ggair_2b (Source File: ggair_2b.f90)

INTERFACE:
subroutine ggair_2b(g2rho,gvrho,vx,vc,dxdg2,dcdg2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggair_sp_2b.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.79 ggair_sp_1 (Source File: ggair_sp_1.f90)

INTERFACE:
subroutine ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn)
INPUT/OUTPUT PARAMETERS:

rhoup : spin-up density (in,real(ngtot))
rhodn : spin-down density (in,real(ngtot))

grho : |grad rhol| (out,real(ngtot))
gup : lgrad rhoup| (out,real(ngtot))
gdn : |grad rhodn| (out,real(ngtot))

g2up : grad~2 rhoup (out,real(ngtot))

g2dn : grad”2 rhodn (out,real(ngtot))

g3rho : (grad rho).(grad |grad rhol) (out,real(ngtot))
g3up : (grad rhoup).(grad |grad rhoup|) (out,real(ngtot))
g3dn : (grad rhodn).(grad |grad rhodnl|) (out,real(ngtot))

DESCRIPTION:

Computes |Vp|, [Vp'], [Vp|, V2pT, V2p¥, Vp- (V[Vpl), Vp! - (VIVp!]) and Vp* - (V|VpH])
for the interstitial charge density, as required by the generalised gradient approximation
functionals of type 1 for spin-polarised densities. See routines potxc and modxcifc.

REVISION HISTORY:

Created October 2004 (JKD)
Simplified and improved, October 2009 (JKD)
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7.80 ggair_sp_2a (Source File: ggair_sp_2a.f90)

INTERFACE:
subroutine ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2, gupdn)
USES:

use modmain

DESCRIPTION:

Computes the interstitial gradients V2pT, V2pt, Vp!, Vpt, (Vph)2, (Vp*)? and Vp! - Vp'.
These are used for GGA functionals of type 2 and meta-GGA. See ggamt_sp_2a for details.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.81 ggair_sp_2b (Source File: ggair_sp_2b.f90)

INTERFACE:

subroutine ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, &
dxdgud,dcdgu2,dcdgd2,dcdgud)

USES:

use modmain

DESCRIPTION:

Post processing step of interstitial gradients for GGA type 2. See routine ggamt_sp_2a for
full details.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.82 ggamt_1 (Source File: ggamt_1.f90)

INTERFACE:
subroutine ggamt_1(ias,grho,g2rho,g3rho)
USES:

use modmain
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DESCRIPTION:

Spin-unpolarised version of ggamt_sp_1.

REVISION HISTORY:

Created November 2009 (JKD)

7.83 ggamt_2a (Source File: ggamt 2a.f90)

INTERFACE:
subroutine ggamt_2a(ias,g2rho,gvrho,grho2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggamt_sp_2a.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.84 ggamt_2b (Source File: ggamt_2b.f90)

INTERFACE:
subroutine ggamt_2b(is,g2rho,gvrho,vx,vc,dxdg2,dcdg2)
USES:

use modmain

DESCRIPTION:

Spin-unpolarised version of ggamt_sp_2b.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)
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7.85 ggamt _sp_1 (Source File: ggamt_sp_1.f90)

INTERFACE:

subroutine ggamt_sp_1(is,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

is : species number (in,integer)
rhoup : spin-up density in spherical coordinates (in,real (lmmaxvr,nrmtmax))
rhodn : spin-down density (in,real (lmmaxvr,nrmtmax))

grho : |grad rhol (out,real(lmmaxvr,nrmtmax))

gup : lgrad rhoup| (out,real(lmmaxvr,nrmtmax))

gdn : |grad rhodn| (out,real(lmmaxvr,nrmtmax))

g2up : grad"2 rhoup (out,real(lmmaxvr,nrmtmax))

g2dn : grad”2 rhodn (out,real(lmmaxvr,nrmtmax))

g3rho : (grad rho).(grad |grad rhol|) (out,real(lmmaxvr,nrmtmax))

g3up : (grad rhoup).(grad |grad rhoupl|) (out,real(lmmaxvr,nrmtmax))

g3dn : (grad rhodn).(grad |grad rhodnl|) (out,real(lmmaxvr,nrmtmax))
DESCRIPTION:

Computes |Vpl, [Vp|, [Vp*|, V2pT, V2p*, V- (V|Vp|), Vp! - (V|Vp']) and Vp* - (V|VpH])
for a muffin-tin charge density, as required by the generalised gradient approximation func-
tionals of type 1 for spin-polarised densities. The input densities and output gradients are
in terms of spherical coordinates. See routines potxc and modxcifc

REVISION HISTORY:

Created April 2004 (JKD)
Simplified and improved, October 2009 (JKD)

7.86 ggamt sp_2a (Source File: ggamt _sp_2a.f90)

INTERFACE:
subroutine ggamt_sp_2a(is,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn)
USES:

use modmain

DESCRIPTION:
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Computes the muffin-tin gradients V2p!, V2p¥, Vp!, Vo, (Vph)2, (Vp+)? and Vo' - V!,
which are passed in to GGA functional subroutines of type 2. The exchange-correlation
energy in these routines has the functional form

Exelp", p'] :/d3r€mc(ﬁ(r),p¢(r),(VPT(F))2,(Vpi(r))Z,VpT(r)-Vpi(r))a

where €,.(r) = €z.(r)p(r) is the xc energy per unit volume, with €,. being the xc energy
per electron, and p = p' + p*. From the gradients above, type 2 GGA routines return
€z, but not directly the xc potentials. Instead they generate the derivatives 9é,./9p'(r),
0é.¢/0(Vp'(r))?, and the same for down spin, as well as 9é,./0(Vp'(r) - Vp*(r)). In a
post-processing step invoked by ggamt_sp_2b, integration by parts is used to obtain the xc
potential explicitly with

0é 0é €
T — re 9 xc . T 9 xc 2 1
V) (Vawmi’) Ve

€ ¢
S VAN R SR R
< a(VpT-W)) Pt vy
and similarly for Vjc.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)

7.87 ggamt_sp_2b (Source File: ggamt_sp_2b.f90)

INTERFACE:

subroutine ggamt_sp_2b(is,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, &
dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud)

USES:

use modmain

DESCRIPTION:

Post processing step of muffin-tin gradients for GGA type 2. See routine ggamt_sp_2a for
full details.

REVISION HISTORY:

Created November 2009 (JKD and TMcQ)
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7.88 gndstate (Source File: gndstate.f90)

INTERFACE:
subroutine gndstate
USES:

use modmain
use modmpi
use moddftu

DESCRIPTION:

Computes the self-consistent Kohn-Sham ground-state. General information is written to
the file INFO.QUT. First- and second-variational eigenvalues, eigenvectors and occupancies
are written to the unformatted files EVALFV.0UT, EVALSV.0UT, EVECFV.0QUT, EVECSV.QUT
and 0CCSV.0UT. The density, magnetisation, Kohn-Sham potential and magnetic field are
written to STATE.OUT.

REVISION HISTORY:

Created October 2002 (JKD)
Added MPI, August 2010 (JKD)

7.89 gradrfmt (Source File: gradrfmt.f90)

INTERFACE:
subroutine gradrfmt(nr,nri,r,rfmt,ld,grfmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)
nri : number of points on inner part of muffin-tin (in,integer)
r : radial mesh (in,real(nr))
rfmt : real muffin-tin function (in,real(lmmaxvr,nr))
14 : leading dimension (in,integer)
grfmt : gradient of rfmt (out,real(lmmaxvr,ld,3))
DESCRIPTION:

Calculates the gradient of a real muffin-tin function. In other words, given the real spherical
harmonic expansion coefficients, f,,(r), of a function f(r), the routine returns Fy,, where

S Fin (1) Rim () = V£ (1),
im
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and Ry, is a real spherical harmonic function. This is done by first converting the function
to a complex spherical harmonic expansion and then using the routine gradzfmt. See
routine genrlm.

REVISION HISTORY:
Created August 2003 (JKD)

7.90 gradzfmt (Source File: gradzfmt.f90)

INTERFACE:

subroutine gradzfmt(nr,nri,r,zfmt,1ld,gzfmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)

nri  : number of points on inner part of muffin-tin (in,integer)

r : radial mesh (in,real(nr))

zfmt : complex muffin-tin function (in,complex(lmmaxvr,nr))

14 : leading dimension (in,integer)

gzfmt : gradient of zfmt (out,complex(lmmaxvr,ld,3))
DESCRIPTION:

Calculates the gradient of a complex muffin-tin function. In other words, given the spherical
harmonic expansion coefficients, f,,(r), of a function f(r), the routine returns Fy,, where

S By (1) Vi (8) = V().
im

This is done using the formula (see, for example, V. Devanathan, Angular Momentum
Techniques In Quantum Mechanics)

. / [ d
v(;flm }/lm I‘ l717l + Hm Mam_i_u)ybrlm«hu(r) (d?“ T‘) flm( )
/ ~fd 141
l,l,l 1’m7M,m+M)YL1,m+M(I‘) (dT’ r >flm( )

where C' are Clebsch-Gordan coefficients and the gradient V7, is in terms of the spherical
unit vectors e:

x—zy

N

X +iy . A
ey = 27, e_1 =

61 = —
+1 \/57 0

Note that the gradient returned is in terms of the global (x,y,

N>
SN—
E

coordinate system.

REVISION HISTORY:
Rewritten May 2009 (JKD)
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7.91 gridsize (Source File: gridsize.f90)

INTERFACE:
subroutine gridsize(avec,gmaxvr,ngridg,ngtot,intgv)
INPUT/OUTPUT PARAMETERS:

avec : lattice vectors (in,real(3,3))
gmaxvr : G-vector cut-off (in,real)
ngridg : G-vector grid sizes (out,integer(3))

ngtot : total number of G-vectors (out,integer)
intgv : integer grid intervals for each direction (out,integer(2,3))
DESCRIPTION:

Finds the G-vector grid which completely contains the vectors with G < Gpax and is
compatible with the FFT routine. The optimal sizes are given by

G a;
7’L,L‘ = m:_(| Z‘ —|— 1,

where a; is the ¢th lattice vector.

REVISION HISTORY:

Created July 2003 (JKD)
Removed modmain and added arguments, September 2012 (JKD)

7.92 hermite (Source File: hermite.f90)

INTERFACE:
real(8) function hermite(n,x)
INPUT/OUTPUT PARAMETERS:

n : order of Hermite polynomial (in,integer)
x : real argument (in,real)

DESCRIPTION:

Returns the nth Hermite polynomial. The recurrence relation
HI(J:‘) = 2.1‘Hi_1($) — 2TLHZ'_2(I'),

with Hy = 1 and H; = 2z, is used. This procedure is numerically stable and accurate to
near machine precision for n < 20.

REVISION HISTORY:
Created April 2003 (JKD)
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7.93 hmlaa (Source File: hmlaa.f90)

INTERFACE:

subroutine hmlaa(ias,ngp,apwalm,ld,h)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

ias : joint atom and species number (in,integer)
ngp : number of G+p-vectors (in,integer)
apwalm : APW matching coefficients
(in, complex (ngkmax ,apwordmax,lmmaxapw,natmtot))

14 : leading dimension of h (in,integer)
h : Hamiltonian matrix (inout,complex(*))
DESCRIPTION:

Calculates the APW-APW contribution to the Hamiltonian matrix.

REVISION HISTORY:

Created October 2002 (JKD)

7.94 hmlistl (Source File: hmlistl.f90)

INTERFACE:
subroutine hmlistl(ngp,igpig,vgpc,1d,h)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax))
vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax))
1d : leading dimension of h (in,integer)
h : Hamiltonian matrix (inout,complex(*))

DESCRIPTION:

Computes the interstitial contribution to the Hamiltonian matrix for the APW basis func-
tions. The Hamiltonian is given by

HY(G +k G +k) = %(G +K) - (G +K)O(G — G + Vi(G — @),
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where V; is the interstitial Kohn-Sham potential and © is the characteristic function. See
routine gencfun.

REVISION HISTORY:
Created April 2003 (JKD)

7.95 hmlrad (Source File: hmlrad.f90)

INTERFACE:
subroutine hmlrad
USES:

use modmain

DESCRIPTION:

Calculates the radial Hamiltonian integrals of the APW and local-orbital basis functions.
In other words, for atom «, it computes integrals of the form

fORi ug‘;l(r)Hug,;l,(T)Ter "=0

T N
S {fOR’L Uy (P)Vigh o (PG ()% 17 >0

where ug,, is the gth APW radial function for angular momentum /;  is the Hamiltonian of
the radial Schrodinger equation; and V77, . is the muffin-tin Kohn-Sham potential. Similar
integrals are calculated for APW-local-orbital and local-orbital-local-orbital contributions.

REVISION HISTORY:
Created December 2003 (JKD)

7.96 i3mdet (Source File: i3mdet.f90)

INTERFACE:
integer function i3mdet(a)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,integer(3,3))

DESCRIPTION:

Returns the determinant of an integer 3 x 3 matrix A.

REVISION HISTORY:
Created October 2004 (JKD)
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7.97 i3minv (Source File: i3minv.f90)

INTERFACE:
subroutine i3minv(a,b)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,integer(3,3))
b : output matrix (in,integer(3,3))

DESCRIPTION:
Computes the inverse of a integer 3 x 3 matrix: B = A~L.

REVISION HISTORY:

Created November 2003 (JKD)

7.98 i3mtv (Source File: i3mtv.f90)

INTERFACE:
subroutine i3mtv(a,x,y)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,integer(3,3))
x : input vector (in,integer(3))
y : output vector (out,integer(3))

DESCRIPTION:
Multiplies the transpose of an integer 3 x 3 matrix with a vector.

REVISION HISTORY:

Created April 2007 (JKD)

7.99 init0 (Source File: init0.f90)

INTERFACE:
subroutine initO

USES:
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use modmain
use modxcifc
use moddftu
use modtddft
use modphonon
use modtest
use modvars

DESCRIPTION:

Performs basic consistency checks as well as allocating and initialising global variables not
dependent on the k-point set.

REVISION HISTORY:

Created January 2004 (JKD)

7.100 initl (Source File: init1.f90)

INTERFACE:
subroutine initil
USES:

use modmain
use moddftu
use modtest
use modvars

DESCRIPTION:

Generates the k-point set and then allocates and initialises global variables which depend
on the k-point set.

REVISION HISTORY:

Created January 2004 (JKD)

7.101 linengy (Source File: linengy.f90)

INTERFACE:
subroutine linengy

USES:
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use modmain
use modmpi

DESCRIPTION:

Calculates the new linearisation energies for both the APW and local-orbital radial func-
tions. See the routine findband.

REVISION HISTORY:

Created May 2003 (JKD)

7.102 lopzflm (Source File: lopzflm.f90)

INTERFACE:
subroutine lopzflm(lmax,zflm,1ld,z1flm)

INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

zflm : coefficients of input spherical harmonic expansion
(in,complex ((lmax+1)*%*2))

14 : leading dimension (in,integer)

z1flm : coefficients of output spherical harmonic expansion
(out, complex(1d,3))

DESCRIPTION:

Applies the angular momentum operator L to a function expanded in terms of complex
spherical harmonics. This makes use of the identities

(Lz +iLy)Yin(0,0) = /(L = m)(L + m + 1)Yip41(6, §)
(Lo — iLy)Yin(0,0) = /(L + m)(l = m + 1)Yip_1(6, ¢)
Lz}/lm(ev ¢) = mi/lm(ea QZ))

REVISION HISTORY:

Created March 2004 (JKD)

7.103 massnucl (Source File: massnucl.f90)

INTERFACE:

real(8) function massnucl(z)
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INPUT/OUTPUT PARAMETERS:
z : atomic number (in,real)

DESCRIPTION:

Computes an approximate nuclear mass from the atomic number Z. The nuclear mass
number, A, is first estimated using

A =4467 x10732% +2.163Z — 1.168,

[D. Andrae in Relativistic Electronic Structure Theory - Fundamentals 11, 203 (2002)].
Then the nuclear mass can be determined from:

M:Zmp—{—Nmn—E,

where m,, is the proton mass, m,, is the neutron mass and B is the nuclear binding energy.
The binding energy is approximated by the Weizsédcker formula:

B=ayA—asA?? —acZ?A7Y? — 4y (Z — N)?A7! + B, + Bapan-

See F. Yang and J. H. Hamilton in Modern Atomic and Nuclear Physics, Revised Edition
2010, for details on the quantities in this formula. In this implementation, B, and Bgen
are set to zero.

REVISION HISTORY:

Created February 2014 (JKD)

7.104 match (Source File: match.f90)

INTERFACE:
subroutine match(ngp,gpc,tpgpc,sfacgp,apwalm)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
gpc : length of G+p-vectors (in,real(ngkmax))
tpgpc : (theta, phi) coordinates of G+p-vectors (in,real(2,ngkmax))

sfacgp : structure factors of G+p-vectors (in,complex(ngkmax,natmtot))
apwalm : APW matching coefficients
(out, complex (ngkmax,apwordmax, lmmaxapw,natmtot))
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DESCRIPTION:

Computes the (G + p)-dependent matching coefficients for the APW basis functions. Inside
muffin-tin «, the APW functions are given by

lm‘}x

¢G+p Z Z ZA]lm G+p ( )Yim(f‘)a

=0 m=—1 j=1

where Aﬂm(G + p) is the matching coefficient, M}* is the order of the APW and ug; is the
radial function. In the interstitial region, an APW function is a plane wave, exp(i(G + p) -
r)/ V/Q, where € is the unit cell volume. Ensuring continuity up to the (M[*—1)th derivative
across the muffin-tin boundary therefore requires that the matching coefficients satisfy

My

> DA%, (G+p)=b,

j=1
where )

L)
Yo il
r=Ra
and
4rit i 1 (l 1) . m
bi=—=I|G + p| (|G + p|Ra) exp(i(G + p) - 1a) Vi, (G + p),

75

with r, the atomic position and R, the muffin-tin radius. See routine wavefmt.

REVISION HISTORY:

Created April 2003 (JKD)
Fixed documentation, June 2006 (JKD)

7.105 mixadapt (Source File: mixadapt.f90)

INTERFACE:
subroutine mixadapt(iscl,beta0,betamax,n,nu,mu,beta,f,d)

INPUT/OUTPUT PARAMETERS:

iscl : self-consistent loop number (in,integer)

beta0 : mixing parameter (in,real)

betamax : maximum mixing parameter (in,real)

n : vector length (in,integer)

nu : current output vector as well as the next input vector of the
self-consistent loop (inout,real(n))

mu : used internally (inout,real(n))

beta : used internally (inout,real(n))

f : used internally (inout,real(n))

d : RMS difference between old and new output vectors (out,real)
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DESCRIPTION:

Given the input vector x’ and output vector v of the ith self-consistent loop, this routine
generates the next input vector to the loop using an adaptive mixing scheme. The jth
component of the output vector is mixed with a fraction of the same component of the
input vector:
pitt = Bk + (1= B,

where B;H = B; + Bo if f]’f = 1/; — ,u§ does not change sign between loops. If f; does change
sign, then ,8;-“ = (ﬁ; + Bo)/2. Note that the array nu serves for both input and output, and
the arrays mu, beta and f are used internally and should not be changed between calls. The
routine is thread-safe so long as each thread has its own independent work arrays. Complex
arrays may be passed as real arrays with n doubled.

REVISION HISTORY:

Created March 2003 (JKD)
Modified, September 2008 (JKD)
Modified, August 2011 (JKD)

7.106 mixpack (Source File: mixpack.f90)

INTERFACE:
subroutine mixpack(tpack,n,v)
USES:

use modmain
use moddftu

INPUT/OUTPUT PARAMETERS:

tpack : .true. for packing, .false. for unpacking (in,logical)
n : total number of real values stored (out,integer)
v : packed potential (inout,real(*))

DESCRIPTION:

Packs/unpacks the muffin-tin and interstitial parts of the Kohn-Sham potential and mag-
netic field into/from the single array v. This array can then be passed directly to the mixing
routine. See routine rfpack.

REVISION HISTORY:

Created June 2003 (JKD)
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7.107 mixpulay (Source File: mixpulay.f90)

INTERFACE:
subroutine mixpulay(iscl,n,msd,nu,mu,f,d)
INPUT/OUTPUT PARAMETERS:

iscl : self-consistent loop number (in,integer)

n : vector length (in,integer)

msd : maximum subspace dimension (in,integer)

nu : current output vector as well as the next input vector of the
self-consistent loop (inout,real(n))

mu : used internally (inout,real(n,msd))

f : used intermally (inout,real(n,msd))

d : RMS difference between old and new output vectors (out,real)

DESCRIPTION:

Pulay’s mixing scheme which uses direct inversion in the iterative subspace (DIIS). See
Chem. Phys. Lett. 73, 393 (1980).

REVISION HISTORY:

Created October 2008 (S. Suehara, NIMS)
Modified, October 2008 (JKD)

7.108 randomu (Source File: modrandom.f90)

INTERFACE:
real(8) function randomu()

DESCRIPTION:

Generates random numbers with a uniform distribution using the fifth-order multiple re-
cursive generator of P. L’Ecuyer, F. Blouin, and R. Coutre, ACM Trans. Modeling Comput.
Simulation 3, 87 (1993). The sequence of numbers r; is produced from

x; = (a1xi—1 + azxi—5) mod m
with r; = 2;/m. The period is about 2.

REVISION HISTORY:

Created January 2012 (JKD)
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7.109 xcifc (Source File: modxcifc.f90)

INTERFACE:

subroutine xcifc(xctype,n,c_tb09,rho,rhoup,rhodn,grho,gup,gdn,g2rho,g2up,g2dn, &
g3rho,g3up,g3dn, grho2,gup2,gdn2,gupdn, tau,tauup, taudn,ex,ec,vx,vc,vxup,vxdn, &
vcup,vedn,dxdg?2,dxdgu2,dxdgd2,dxdgud,dcdg2,dcdgu2,dcdgd2,dcdgud)

INPUT/OUTPUT PARAMETERS:

xctype : type of exchange-correlation functional (in,integer(3))

n : number of density points (in,integer)

c_tb09 : Tran-Blaha ’09 constant c (in,real,optional)

rho : spin-unpolarised charge density (in,real(n),optional)
rhoup : spin-up charge density (in,real(n),optional)

rhodn : spin-down charge density (in,real(n),optional)

grho : |grad rhol| (in,real(n),optional)

gup : |grad rhoup| (in,real(n),optional)

gdn : |grad rhodn| (in,real(n),optional)

g2rho : grad”2 rho (in,real(n),optional)

g2up : grad™2 rhoup (in,real(n),optional)

g2dn : grad”2 rhodn (in,real(n),optional)

g3rho : (grad rho).(grad |grad rhol) (in,real(n),optional)
g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n),optional)
g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n),optional)
grho2 : |grad rho|"2 (in,real(n),optional)

gup2 : |grad rhoup|~2 (in,real(n),optional)

gdn2 : |grad rhodn|~2 (in,real(n),optional)

gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional)

tau : kinetic energy density (in,real(n),optional)

tauup : spin-up kinetic energy density (in,real(n),optional)
taudn : spin-down kinetic energy density (in,real(n),optional)
ex : exchange energy density (out,real(n),optional)

ec : correlation energy density (out,real(n),optional)

vx : spin-unpolarised exchange potential (out,real(n),optional)
ve : spin-unpolarised correlation potential (out,real(n),optional)
vxup : spin-up exchange potential (out,real(n),optional)

vxdn : spin-down exchange potential (out,real(n),optional)
vcup : spin-up correlation potential (out,real(n),optional)
vcdn  : spin-down correlation potential (out,real(n),optional)

dxdg2 : de_x/d(lgrad rho|~2) (out,real(n),optional)

dxdgu2 : de_x/d(lgrad rhoup|~2) (out,real(n),optional)

dxdgd2 : de_x/d(lgrad rhodn|~2) (out,real(n),optional)

dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional)
dcdg2 : de_c/d(lgrad rho|~2) (out,real(n),optional)

dcdgu2 : de_c/d(lgrad rhoup|~2) (out,real(n),optional)

dcdgd2 : de_c/d(lgrad rhodn|~2) (out,real(n),optional)

dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional)
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DESCRIPTION:

Interface to the exchange-correlation routines. In the most general case (meta-GGA), the
exchange-correlation energy is given by

Erelp', p*] = /d37” p(r) eae(p’, 0%, [V pl, V'], Vo], V2!, V2p*, 7),

where p(r) = p'(r) + p*(r) is the density;

7(r) =) Vi(r) - Vi(r)

7 occ

is twice the spin-contracted kinetic energy density; and e,. is the exchange-correlation
energy per electron.

REVISION HISTORY:

Created October 2002 (JKD)

7.110 getxcdata (Source File: modxcifc.f90)

INTERFACE:
subroutine getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc)

INPUT/OUTPUT PARAMETERS:

xctype : type of exchange-correlation functional (in,integer(3))
xcdescr : description of functional (out,character(256))

xcspin : spin treatment (out,integer)

xcgrad : gradient treatment (out,integer)

hybrid : .true. if functional a hybrid (out,logical)

hybridc : hybrid exact exchange mixing coefficient (out,real(8))

DESCRIPTION:

Returns data on the exchange-correlation functional labeled by xctype. The character array
xcdescr contains a short description of the functional including journal references. The
variable xcspin is set to 1 or 0 for spin-polarised or -unpolarised functionals, respectively.
For functionals which require the gradients of the density xcgrad is set to 1, otherwise it is
set to 0.

REVISION HISTORY:

Created October 2002 (JKD)
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7.111 moment (Source File: moment.f90)

INTERFACE:
subroutine moment
USES:

use modmain
use modtest

DESCRIPTION:
Computes the muffin-tin, interstitial and total moments by integrating the magnetisation.

REVISION HISTORY:

Created January 2005 (JKD)

7.112 mossbauer (Source File: mossbauer.f90)

INTERFACE:
subroutine mossbauer
USES:

use modmain

DESCRIPTION:

Computes the contact charge density and contact magnetic hyperfine field for each atom
and outputs the data to the file MOSSBAUER.OUT. The Thomson radius, Rt = Z/c?, is used
for determining the contact moment m,, the relation of which to field strength is via Fermi’s

formula .
T
Bc - ?,uBmC)

where the orbital and dipolar contributions are neglected. See S. Bliigel, H. Akai, R. Zeller,
and P. H. Dederichs, Phys. Rev. B 35, 3271 (1987). See also radnucl.

REVISION HISTORY:

Created May 2004 (JKD)
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7.113 mtdmin (Source File: mtdmin.f90)

INTERFACE:

subroutine mtdmin(is, js,dmin)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

is, js : species numbers (out,integer)
dmin : minimum distance between muffin-tin surfaces (out,real)

DESCRIPTION:

Finds the atomic species pair for which the distance between the muffin-tin surfaces is a
minimum. This distance may be negative if the muffin-tins overlap.

REVISION HISTORY:

Created October 2011 (JKD)

7.114 nfftifc (Source File: nfftifc.f90)

INTERFACE:
subroutine nfftifc(n)
INPUT/OUTPUT PARAMETERS:
n : required/avalable grid size (inout,integer)

DESCRIPTION:

Interface to the grid requirements of the fast Fourier transform routine. Most routines
restrict n to specific prime factorisations. This routine returns the next largest grid size
allowed by the FFT routine.

REVISION HISTORY:

Created October 2002 (JKD)
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7.115 nonlinopt (Source File: nonlinopt.f90)

INTERFACE:
subroutine nonlinopt
USES:

use modmain

DESCRIPTION:

Calculates susceptibility tensor for non-linear optical second-harmonic generation (SHG).
The terms (ztm) are numbered according to Eqs. (49)-(51) of the article Physica Scripta
T109, 128 (2004). Other good references are Phys. Rev. B 48, 11705 (1993) and Phys.
Rev. B 53, 10751 (1996).

REVISION HISTORY:

Rewrote earlier version, June 2010 (Sharma)

7.116 occupy (Source File: occupy.f90)

INTERFACE:
subroutine occupy
USES:

use modmain
use modtest

DESCRIPTION:

Finds the Fermi energy and sets the occupation numbers for the second-variational states
using the routine fermi.

REVISION HISTORY:

Created February 2004 (JKD)
Added gap estimation, November 2009 (F. Cricchio)
Added adaptive smearing width, April 2010 (T. Bjorkman)
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7.117 olpistl (Source File: olpistl.f90)

INTERFACE:
subroutine olpistl(ngp,igpig,1d,o0)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngp : number of G+p-vectors (in,integer)
igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax))
14 : leading dimension of o (in,integer)
) : overlap matrix (inout,complex(*))
DESCRIPTION:

Computes the interstitial contribution to the overlap matrix for the APW basis functions.
The overlap is given by 3

O'G +k,G +k)=6(G -G,
where © is the characteristic function. See routine gencfun.

REVISION HISTORY:
Created April 2003 (JKD)

7.118 olprad (Source File: olprad.f90)

INTERFACE:
subroutine olprad
USES:

use modmain

DESCRIPTION:

Calculates the radial overlap integrals of the APW and local-orbital basis functions. In
other words, for atom «, it computes integrals of the form

R;
2
og‘pz/O ug‘;lp(r)vg(r)r dr
and
R; )
Oppr :/0 vy (v (r)rodr, 1, = ly

where ug, is the gth APW radial function for angular momentum /; and vy is the pth
local-orbital radial function and has angular momentum /,,.

REVISION HISTORY:
Created November 2003 (JKD)
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7.119 pade (Source File: pade.f90)

INTERFACE:
subroutine pade(nin,zin,uin,nout,zout,uout)

INPUT/OUTPUT PARAMETERS:

nin : number of input points (in,integer)
zin : input points (in,complex(nin))
uin : input function values (in,complex(nin))

nout : number of output points (in,integer)
zout : output points (in,complex(nout))
uout : output function values (out,complex(nout))

DESCRIPTION:

Calculates a Padé approximant of a function, given the function evaluated on a set of points
in the complex plane. The function is returned for a set of complex output points. The
algorithm from H. J. Vidberg and J. W. Serene J. Low Temp. Phys. 29, 179 (1977) is
used.

REVISION HISTORY:

Created December 2010 (Antonio Sanna)

7.120 plotld (Source File: plot1d.f90)

INTERFACE:

subroutine plotld(fnuml,fnum2,nf,rfmt,rfir)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

fnuml : plot file number (in,integer)
fnum?2 : vertex location file number (in,integer)

nf : number of functions (in,integer)
rfmt : real muffin-tin function (in,real (lmmaxvr,nrmtmax,natmtot,nf))
rfir : real intersitial function (in,real(ngtot,nf))

DESCRIPTION:

Produces a 1D plot of the real functions contained in arrays rfmt and rfir along the lines
connecting the vertices in the global array vvlpld. See routine rfarray.

REVISION HISTORY:
Created June 2003 (JKD)
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7.121 plot2d (Source File: plot2d.f90)

INTERFACE:

subroutine plot2d(fnum,nf,rfmt,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

fnum : plot file number (in,integer)

nf : number of functions (in,integer)

rfmt : real muffin-tin function (in,real (lmmaxvr,nrmtmax,natmtot,nf))
rfir : real intersitial function (in,real(ngtot,nf))

DESCRIPTION:

Produces a 2D plot of the real functions contained in arrays rfmt and rfir on the paral-
lelogram defined by the corner vertices in the global array vclp2d. See routine rfarray.

REVISION HISTORY:
Created June 2003 (JKD)

7.122 plot3d (Source File: plot3d.f90)

INTERFACE:

subroutine plot3d(fnum,nf,rfmt,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

fnum : plot file number (in,integer)

nf : number of functions (in,integer)

rfmt : real muffin-tin function (in,real (lmmaxvr,nrmtmax,natmtot,nf))
rfir : real intersitial function (in,real(ngtot,nf))

DESCRIPTION:

Produces a 3D plot of the real functions contained in arrays rfmt and rfir in the paral-
lelepiped defined by the corner vertices in the global array vclp3d. See routine rfarray.

REVISION HISTORY:

Created June 2003 (JKD)
Modified, October 2008 (F. Bultmark, F. Cricchio, L. Nordstrom)

110



7.123 polynom (Source File: polynom.f90)

INTERFACE:
real(8) function polynom(m,np,xa,ya,c,x)
INPUT/OUTPUT PARAMETERS:

m : order of derivative (in,integer)

np : number of points to fit (in,integer)
xa : abscissa array (in,real(np))

ya : ordinate array (in,real(np))

c : work array (out,real(np))
x : evaluation abscissa (in,real)
DESCRIPTION:

Fits a polynomial of order n, — 1 to a set of n, points. If m > 0 the function returns the
mth derviative of the polynomial at x, while for m < 0 the integral of the polynomial from
the first point in the array to x is returned.

REVISION HISTORY:

Created October 2002 (JKD)

7.124 potcoul (Source File: potcoul.f90)

INTERFACE:
subroutine potcoul
USES:

use modmain

DESCRIPTION:

Calculates the Coulomb potential of the real charge density stored in the global variables
rhomt and rhoir by solving Poisson’s equation. These variables are coverted to complex
representations and passed to the routine zpotcoul.

REVISION HISTORY:

Created April 2003 (JKD)
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7.125 potks (Source File: potks.f90)

INTERFACE:
subroutine potks
USES:

use modmain

DESCRIPTION:

Computes the Kohn-Sham effective potential by adding together the Coulomb and exchange-
correlation potentials. Also computes the effective magnetic field. See routines potcoul and
potxc.

REVISION HISTORY:

Created April 2003 (JKD)

7.126 potplot (Source File: potplot.f90)

INTERFACE:
subroutine potplot
USES:

use modmain

DESCRIPTION:

Outputs the exchange, correlation and Coulomb potentials, read in from STATE.OUT, for
1D, 2D or 3D plotting.

REVISION HISTORY:

Created June 2003 (JKD)

7.127 pottm2 (Source File: pottm2.f90)

INTERFACE:
subroutine pottm2(i,kl,p,vh,vx)
USES:

use moddftu
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INPUT/OUTPUT PARAMETERS:

i : DFT+U entry (in,integer)

k1 : k-index of tensor moment (in,integer)
p : p-index of tensor moment (in,integer)
vh : Hartree potential energy (out,real)

vx : exchange potential energy (out,real)

DESCRIPTION:

Calculates the DF'T+U Hartree and exchange potential energies for a 2-index tensor moment,
component. See pottm3.

REVISION HISTORY:

Created April 2008 (F. Cricchio and L. Nordstrom)
Modified, January 2014 (JKD)

7.128 pottm3 (Source File: pottm3.f90)

INTERFACE:

subroutine pottm3(i,kl,p,r,vh,vx)
USES:

use moddftu
INPUT/OUTPUT PARAMETERS:

i : DFT+U entry (in,integer)

k1 : k-index of tensor moment (in,integer)
p : p-index of tensor moment (in,integer)
r : r-index of tensor moment (in,integer)
vh : Hartree potential energy (out,real)
vx : exchange potential energy (out,real)

DESCRIPTION:

Calculates the DF'T+U Hartree and exchange potential energies for a 3-index tensor moment,
component. See Eq. (28) in Phys. Rev. B 80, 035121 (2009); and Egs. (3), (4) in Phys.
Rev. B 78, 100404 (2008).

REVISION HISTORY:

Created April 2008 (F. Cricchio and L. Nordstrom)
Modified and fixed bug, January 2014 (JKD)
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7.129 potxc (Source File: potxc.f90)

INTERFACE:
subroutine potxc
USES:

use modmain
use modxcifc

DESCRIPTION:

Computes the exchange-correlation potential and energy density. In the muffin-tin, the
density is transformed from spherical harmonic coefficients pj,, to spherical coordinates
(0,¢) with a backward spherical harmonic transformation (SHT). Once calculated, the
exchange-correlation potential and energy density are transformed with a forward SHT.

REVISION HISTORY:

Created April 2003 (JKD)

7.130 r3cross (Source File: r3cross.f90)

INTERFACE:
subroutine r3cross(x,y,z)
]NPUT/O UTPUT PARAMETERS:

X : input vector 1 (in,real(3))
y : input vector 2 (in,real(3))
z : output cross-product (out,real(3))

DESCRIPTION:
Returns the cross product of two real 3-vectors.

REVISION HISTORY:

Created September 2002 (JKD)

7.131 r3frac (Source File: r3frac.f90)

INTERFACE:

subroutine r3frac(eps,v)

114



INPUT/OUTPUT PARAMETERS:

eps : zero component tolerance (in,real)
v : input vector (inout,real(3))

DESCRIPTION:

Finds the fractional part of each component of a real 3-vector using the function frac (z) =
x — |z]. A component is taken to be zero if it lies within the intervals [0,¢) or (1 — ¢, 1].

REVISION HISTORY:

Created January 2003 (JKD)
Removed iv, September 2011 (JKD)

7.132 r3mdet (Source File: r3mdet.f90)

INTERFACE:
real(8) function r3mdet(a)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,real(3,3))

DESCRIPTION:

Returns the determinant of a real 3 x 3 matrix A.

REVISION HISTORY:
Created May 2003 (JKD)

7.133 r3minv (Source File: r3minv.f90)

INTERFACE:
subroutine r3minv(a,b)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,real(3,3))
b : output matrix (in,real(3,3))

DESCRIPTION:

Computes the inverse of a real 3 x 3 matrix.

REVISION HISTORY:
Created April 2003 (JKD)
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7.134 r3mm (Source File: r3mm.f90)

INTERFACE:
subroutine r3mm(a,b,c)
INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:
Multiplies two real 3 x 3 matrices.

REVISION HISTORY:

Created April 2003 (JKD)

7.135 r3mmt (Source File: r3mmt.f90)

INTERFACE:
subroutine r3mmt(a,b,c)
INPUT/O UTPUT PARAMETERS:

a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:
Multiplies a real matrix with the transpose of another.

REVISION HISTORY:

Created January 2003 (JKD)

7.136 r3mtm (Source File: r3mtm.f90)

INTERFACE:
subroutine r3mtm(a,b,c)

INPUT/OUTPUT PARAMETERS:
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a : input matrix 1 (in,real(3,3))
b : input matrix 2 (in,real(3,3))
c : output matrix (out,real(3,3))

DESCRIPTION:

Multiplies the transpose of one real 3 x 3 matrix with another.

REVISION HISTORY:
Created January 2003 (JKD)

7.137 r3mtv (Source File: r3mtv.f90)

INTERFACE:
subroutine r3mtv(a,x,y)
INPUT/O UTPUT PARAMETERS:

a : input matrix (in,real(3,3))
x : input vector (in,real(3))
y : output vector (out,real(3))

DESCRIPTION:

Multiplies the transpose of a real 3 x 3 matrix with a vector.

REVISION HISTORY:
Created January 2003 (JKD)

7.138 r3mv (Source File: r3mv.f90)

INTERFACE:
subroutine r3mv(a,x,y)
INPUT/OUTPUT PARAMETERS:

a : input matrix (in,real(3,3))
x : input vector (in,real(3))
y : output vector (out,real(3))

DESCRIPTION:

Multiplies a real 3 x 3 matrix with a vector.

REVISION HISTORY:
Created January 2003 (JKD)
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7.139 radnucl (Source File: radnucl.f90)

INTERFACE:
real(8) function radnucl(z)
INPUT/OUTPUT PARAMETERS:

Zz : atomic number (in,real)

DESCRIPTION:

Computes an approximate nuclear charge radius from the atomic number Z. The nuclear
mass number, A, is estimated using

A= 4467 x 107322 +2.163Z — 1.168,

[D. Andrae in Relativistic Electronic Structure Theory - Fundamentals 11, 203 (2002)], and
the nuclear charge radius can be determined from

. 7’1 T2 1/3
T—(T0+m+A4/3>A s
where g = 0.9071, r1 = 1.105 and ro = —0.548 [I. Angeli, Atomic Data and Nuclear Data

Tables 87, 185 (2004)].

REVISION HISTORY:
Created October 2011 (JKD)

7.140 rdiracdme (Source File: rdiracdme.f90)

INTERFACE:
subroutine rdiracdme(sol,m,kpa,e,nr,r,vr,nn,g0,gl,f0,f1)
UW%UVOUTPUTPARAMETER&

sol : speed of light in atomic units (in,real)

m : order of energy derivative (in,integer)

kpa : quantum number kappa (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

nn : number of nodes (out,integer)

g0 : m th energy derivative of the major component multiplied by r
(out,real(nr))

gl : radial derivative of g0 (out,real(ar))

fO : m th energy derivative of the minor component multiplied by r

(out,real(nr))
f1 : radial derivative of fO (out,real(nr))
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DESCRIPTION:

Finds the solution to the mth energy derivative of the radial Dirac equation using the
routine rdiracint.

REVISION HISTORY:

Created March 2003 (JKD)

7.141 rdirac (Source File: rdirac.f90)

INTERFACE:
subroutine rdirac(sol,n,l,k,nr,r,vr,eval,g0,f0)

INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

n : principal quantum number (in,integer)

1 : quantum number 1 (in,integer)

k : quantum number k (1 or 1+1) (in,integer)

nr : number of radial mesh points (in,integer)

T : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(ar))

eval : eigenvalue without rest-mass energy (inout,real)

g0 : major component of the radial wavefunction (out,real(nr))

f0 : minor component of the radial wavefunction (out,real(nr))
DESCRIPTION:

Finds the solution to the radial Dirac equation for a given potential v(r) and quantum
numbers n, k and [. The method involves integrating the equation using the predictor-
corrector method and adjusting E until the number of nodes in the wavefunction equals
n—1—1. The calling routine must provide an initial estimate for the eigenvalue. Note that
the arrays g0 and f0 represent the radial functions multiplied by 7.

REVISION HISTORY:

Created September 2002 (JKD)

7.142 rdiracint (Source File: rdiracint.f90)

INTERFACE:
subroutine rdiracint(sol,m,kpa,e,nr,r,vr,trsc,nn,g0p,f0p,g0,gl,f0,f1)

INPUT/OUTPUT PARAMETERS:
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sol : speed of light in atomic units (in,real)

m : order of energy derivative (in,integer)

kpa : quantum number kappa (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

trsc : .true. if the radial functions should be rescaled if any one of them

exceeds an overflow value (in,logical)

nn  : number of nodes (out,integer)

g0p : m-1 th energy derivative of the major component multiplied by r
(in,real(nr))

fOp : m-1 th energy derivative of the minor component multiplied by r
(in,real(nr))

g0 : m th energy derivative of the major component multiplied by r
(out,real(nr))

gl : radial derivative of g0 (out,real(nr))

f0 : m th energy derivative of the minor component multiplied by r
(out,real(nr))

f1 : radial derivative of fO (out,real(nr))

DESCRIPTION:

Integrates the mth energy derivative of the radial Dirac equation from r» = 0 outwards. This
involves using the predictor-corrector method to solve the coupled first-order equations (in
atomic units)

( d K) G = 1{2E0 + B - V}Fm 4 2 pim-1)
C C

dr ' r ®

d K 1 m

S oMV pm) — _Zrp (m) _ " q(m=1)
<dr r) " c{ ViGy (:G“ ’

where (;S”):: rggn) and,lﬂgn):: rfg"” are the mth energy derivatives of the major and
minor components multiplied by r, respectively; V is the external potential; Ey is the
electron rest energy; F is the eigen energy (excluding Fy); and k = [ for j = [ — % or
k=—(+1) for j =1+ 4. If m = 0 then the arrays gOp and £Op are not referenced.

REVISION HISTORY:

Created September 2002 (JKD)
Polynomial order fixed to 3, September 2013 (JKD)

7.143 rdmdedc (Source File: rdmdedc.f90)

INTERFACE:

subroutine rdmdedc(dedc)
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USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedc : energy derivative (out,complex(nstsv,nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the total energy w.r.t. the second-variational coefficients evecsv.

REVISION HISTORY:

Created 2008 (Sharma)

7.144 rdmdedn (Source File: rdmdedn.f90)

INTERFACE:
subroutine rdmdedn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedn : free energy derivative (out,real(nstsv,nkpt))

DESCRIPTION:

Calculates the negative of the derivative of total free energy w.r.t. occupation numbers.

REVISION HISTORY:

Created 2008 (Sharma)

7.145 rdmdexcdc (Source File: rdmdexcdc.f90)

INTERFACE:
subroutine rdmdexcdc(dedc)
USES:

use modmain
use modrdm
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INPUT/OUTPUT PARAMETERS:
dedc : energy derivative (inout,complex(nstsv,nstsv,nkpt))
DESCRIPTION:

Calculates the derivative of the exchange-correlation energy w.r.t. evecsv and adds the
result to the total.

REVISION HISTORY:
Created 2008 (Sharma)

7.146 rdmdexcdn (Source File: rdmdexcdn.f90)

INTERFACE:
subroutine rdmdexcdn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedn : energy derivative (inout,real(nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the exchange-correlation energy w.r.t. occupation numbers and
adds the result to the total.

REVISION HISTORY:
Created 2008 (Sharma)

7.147 rdmdkdc (Source File: rdmdkdc.f90)

INTERFACE:
subroutine rdmdkdc
USES:

use modmain
use modrdm

DESCRIPTION:

Calculates the derivative of kinetic energy w.r.t. the second-variational coefficients evecsv.

REVISION HISTORY:
Created October 2008 (Sharma)
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7.148 rdmdtsdn (Source File: rdmdtsdn.f90)

INTERFACE:
subroutine rdmdtsdn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedn : energy derivative (inout,real(nstsv,nkpt))

DESCRIPTION:

Calculates the derivative of the entropic contribution to the free energy w.r.t. occupation
numbers and adds it to the total.

REVISION HISTORY:

Created 2008 (Baldsiefen)

7.149 rdmenergy (Source File: rdmenergy.f90)

INTERFACE:
subroutine rdmenergy
USES:

use modmain
use modrdm
use modmpi
use modtest

DESCRIPTION:

Calculates RDMFT total energy (free energy for finite temperatures).

REVISION HISTORY:

Created 2008 (Sharma)
Updated for free energy 2009 (Baldsiefen)
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7.150 rdmengyxc (Source File: rdmengyxc.f90)

INTERFACE:
subroutine rdmengyxc
USES:

use modmain
use modrdm

DESCRIPTION:
Calculates RDMFT exchange-correlation energy.

REVISION HISTORY:

Created 2008 (Sharma)

7.151 rdmentropy (Source File: rdmentropy.f90)

INTERFACE:
subroutine rdmentropy
USES:

use modmain
use modrdm

DESCRIPTION:

Calculates RDMFT entropy S = — . n;10g(n /Nmax) + (Mmax — 1) 10g(1 — 1 /Nimax ), where
Nmax 18 the maximum allowed occupancy (1 or 2).

REVISION HISTORY:

Created 2008 (Baldsiefen)

7.152 rdmeval (Source File: rdmeval.f90)

INTERFACE:
subroutine rdmeval
USES:

use modmain
use modrdm
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DESCRIPTION:

RDMEFT eigenvalues are determined by calculating the derivative of the total energy with
respect to the occupation number at half the maximum occupancy (nmax/2).

REVISION HISTORY:
Created 2009 (Sharma)

7.153 rdmft (Source File: rdmft.f90)

INTERFACE:
subroutine rdmft
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Main routine for one-body reduced density matrix functional theory (RDMFT).

REVISION HISTORY:

Created 2008 (Sharma)

7.154 rdmminc (Source File: rdmminc.f90)

INTERFACE:
subroutine rdmminc
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Minimizes the total energy with respect to the second-variational coefficients evecsv. The
steepest-descent algorithm is used.

REVISION HISTORY:
Created 2008 (Sharma)
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7.155 rdmminn (Source File: rdmminn.f90)

INTERFACE:
subroutine rdmminn
USES:

use modmain
use modrdm
use modmpi

DESCRIPTION:

Minimizes the total energy w.r.t. occupation numbers. The steepest-descent algorithm is
used.

REVISION HISTORY:

Created 2008 (Sharma)

7.156 rdmvaryc (Source File: rdmvaryc.f90)

INTERFACE:
subroutine rdmvaryc
USES:

use modmain
use modrdm

DESCRIPTION:

Calculates new evecsv from old by using the derivatives of the total energy w.r.t. evecsv.
A single step of steepest-descent is made.

REVISION HISTORY:

Created 2009 (Sharma)

7.157 rdmvaryn (Source File: rdmvaryn.f90)

INTERFACE:
subroutine rdmvaryn

USES:

126



use modmain
use modrdm
use modmpi

DESCRIPTION:

Calculates new occupation numbers from old by using the derivatives of the total energy:

n;V = n?ld — 77, where 7 is chosen such that 0 < n; < nya with

e — 9i(Nmax — i) gi >0
Z gin; i <0

where g; = OF /On; — k, and & is chosen such that ), v; = 0.

REVISION HISTORY:

Created 2009 (JKD,Sharma)

7.158 rdmwritededn (Source File: rdmwritededn.f90)

INTERFACE:
subroutine rdmwritededn(dedn)
USES:

use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
dedn : derivative of energy (in,real(nstsv,nkpt))

DESCRIPTION:

Writes the derivative of total energy with respect to occupation numbers to file RDM_DEDN . OUT.

REVISION HISTORY:

Created 2008 (Sharma)

7.159 rdmwriteengy (Source File: rdmwriteengy.f90)

INTERFACE:
subroutine rdmwriteengy(fnum)

USES:
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use modmain
use modrdm

INPUT/OUTPUT PARAMETERS:
fnum : file number for writing output (in,integer)

DESCRIPTION:

Writes all contributions to the total energy to file.

REVISION HISTORY:
Created 2008 (Sharma)

7.160 readfermi (Source File: readfermi.f90)

INTERFACE:
subroutine readfermi
USES:

use modmain

DESCRIPTION:

Reads the Fermi energy from the file EFERMI.QUT.

REVISION HISTORY:

Created March 2005 (JKD)

7.161 readinput (Source File: readinput.f90)

INTERFACE:
subroutine readinput
USES:

use modmain
use moddftu
use modrdm
use modphonon
use modtest
use modrandom
use modscdft
use modpw

use modtddft
use modvars
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DESCRIPTION:

Reads in the input parameters from the file elk.in. Also sets default values for the input
parameters.

REVISION HISTORY:

Created September 2002 (JKD)

7.162 readstate (Source File: readstate.f90)

INTERFACE:
subroutine readstate
USES:

use modmain
use moddftu

DESCRIPTION:

Reads in the charge density and other relevant variables from the file STATE.QUT. Checks
for version and parameter compatibility.

REVISION HISTORY:

Created May 2003 (JKD)

7.163 reciplat (Source File: reciplat.f90)

INTERFACE:
subroutine reciplat
USES:

use modmain

DESCRIPTION:

Generates the reciprocal lattice vectors from the real-space lattice vectors

21

b1 = ?<a2 X a3)
2

by = ?(33 X ap)
27

b3 = ?(al X ag)
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and finds the unit cell volume = |s|, where s = a;j - (a2 X ag), and the Brillouin zone
volume Qpz = (27)3/Q.

REVISION HISTORY:

Created September 2002 (JKD)

7.164 rfinp (Source File: rfinp.f90)

INTERFACE:

real(8) function rfinp(lrstp,rfmtl,rfmt2,rfirl,rfir2)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

lrstp : radial step length (in,integer)

rfmtl : first function in real spherical harmonics for all muffin-tins
(in,real (Immaxvr,nrmtmax,natmtot))

rfmt2 : second function in real spherical harmonics for all muffin-tins
(in,real (lmmaxvr ,nrmtmax,natmtot))

rfirl : first real interstitial function in real-space (in,real(ngtot))

rfir2 : second real interstitial function in real-space (in,real(ngtot))

DESCRIPTION:

Calculates the inner product of two real fuctions over the entire unit cell. The input muffin-
tin functions should have angular momentum cut-off Imaxvr. In the intersitial region, the
integrand is multiplied with the characteristic function, (:)(r), to remove the contribution
from the muffin-tin. See routines rfmtinp and gencfun.

REVISION HISTORY:

Created July 2004 (JKD)

7.165 rfinterp (Source File: rfinterp.f90)

INTERFACE:
subroutine rfinterp(ni,xi,1ldi,fi,no,x0,1ldo,fo)

INPUT/OUTPUT PARAMETERS:
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ni : number of input points (in,integer)
xi : input abscissa array (in,real(ni))
1di : leading dimension (in,integer)

fi : input data array (in,real(ldi,ni)

no : number of output points (in,integer)

X0 : output abscissa array (in,real(ni))

1do : leading dimension (in,integer)

fo : output interpolated function (out,real(ldo,no))
DESCRIPTION:

Given a function defined on a set of input points, this routine uses a clamped cubic spline
to interpolate the function on a different set of points. See routine spline.

REVISION HISTORY:

Created January 2005 (JKD)

7.166 rfmtctof (Source File: rfmtctof.f90)

INTERFACE:
subroutine rfmtctof (rfmt)
IAUDUYDQDUTY)U71}Z4EQ{MU?TIH%S:

rfmt : real muffin-tin function (in,real(Ilmmaxvr,nrmtmax,natmtot))

DESCRIPTION:

Converts a real muffin-tin function from a coarse to a fine radial mesh by using cubic spline
interpolation. See rfinterp and spline.

REVISION HISTORY:

Created October 2003 (JKD)

7.167 rfmtinp (Source File: rfmtinp.f90)

INTERFACE:

real(8) function rfmtinp(lrstp,nr,nri,r,rfmtl,rfmt2)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:
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lrstp : radial step length (in,integer)

nr : number of radial mesh points (in,integer)

nri : number of radial mesh points on the inner part of the muffin-tin
(in,integer)

T : radial mesh (in,real(nr))

rfmtl : first real function inside muffin-tin (in,real (lmmaxvr,nr))
rfmt2 : second real function inside muffin-tin (in,real (lmmaxvr,nr))

DESCRIPTION:

Calculates the inner product of two real fuctions in the muffin-tin. So given two real
functions of the form

lmax

l
F@) =" fim(r)Rim(t)

=0 m=—1

where Ry, are the real spherical harmonics, the function returns

lmax l

1= Y shnstrar

=0 m=—1

The radial integral is performed using a high accuracy cubic spline method. See routines
genrlm and fderiv.

REVISION HISTORY:

Created November 2003 (Sharma)

7.168 rhocore (Source File: rhocore.f90)

INTERFACE:
subroutine rhocore
USES:

use modmain

DESCRIPTION:

Adds the core density and magnetisation to the muffin-tin functions. Also computes the
amount of leakage of core charge from the muffin-tin spheres into the interstitial.

REVISION HISTORY:

Created April 2003 (JKD)
Fixed core moment direction, October 2012 (M. Meinert)
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7.169 rhoinit (Source File: rhoinit.f90)

INTERFACE:
subroutine rhoinit
USES:

use modmain

DESCRIPTION:

Initialises the crystal charge density. Inside the muffin-tins it is set to the spherical atomic
density. In the interstitial region it is taken to be constant such that the total charge is
correct. Requires that the atomic densities have already been calculated.

REVISION HISTORY:
Created January 2003 (JKD)

7.170 rhomagk (Source File: rhomagk.f90)

INTERFACE:

subroutine rhomagk(ik,evecfv,evecsv)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ik : k-point number (in,integer)
evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv))
evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv))

DESCRIPTION:

Generates the partial valence charge density from the eigenvectors at k-point ik. In the
muffin-tin region, the wavefunction is obtained in terms of its (I, m)-components from both
the APW and local-orbital functions. Using a backward spherical harmonic transform
(SHT), the wavefunction is converted to real-space and the density obtained from its mod-
ulus squared. This density is then accumulated in the global variable rhomt. A similar
proccess is used for the intersitial density in which the wavefunction in real-space is ob-
tained from a Fourier transform of the sum of APW functions. The interstitial density is
added to the global array rhoir. See routines wavefmt, genshtmat and eveqn.

REVISION HISTORY:

Created April 2003 (JKD)

Removed conversion to spherical harmonics, January 2009 (JKD)
Partially de-phased the muffin-tin magnetisation for spin-spirals,
February 2009 (FC, FB & LN)

Optimisations, July 2010 (JKD)
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7.171 rhomagsh (Source File: rhomagsh.f90)

INTERFACE:
subroutine rhomagsh
USES:

use modmain

DESCRIPTION:

Converts the muffin-tin density and magnetisation from spherical coordinates to a spherical
harmonic expansion. See rhomagk.

REVISION HISTORY:

Created January 2009 (JKD)

7.172 rhonorm (Source File: rhonorm.f90)

INTERFACE:
subroutine rhonorm
USES:

use modmain

DESCRIPTION:

Loss of precision of the calculated total charge can result because the muffin-tin density is
computed on a set of (0, ¢) points and then transformed to a spherical harmonic represen-
tation. This routine adds a constant to the density so that the total charge is correct. If
the error in total charge exceeds a certain tolerance then a warning is issued.

REVISION HISTORY:

Created April 2003 (JKD)
Changed from rescaling to adding, September 2006 (JKD)

7.173 rhoplot (Source File: rhoplot.f90)

INTERFACE:
subroutine rhoplot

USES:
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use modmain
DESCRIPTION:
Outputs the charge density, read in from STATE.QUT, for 1D, 2D or 3D plotting.

REVISION HISTORY:
Created June 2003 (JKD)

7.174 rlmrot (Source File: rlmrot.f90)

INTERFACE:
subroutine rlmrot(p,ang,lmax,1ld,d)

INPUT/OUTPUT PARAMETERS:

P : if p=-1 then the rotation matrix is improper (in,integer)

ang : Euler angles; alpha, beta, gamma (in,real(3))

lmax : maximum angular momentum (in,integer)

1d : leading dimension (in,integer)

d : real spherical harmonic rotation matrix (out,real(ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of real spherical harmonics given the three Euler

angles, (a,3,7), and the parity, p, of the rotation. The matrix is determined using the
formula of V. V. Nechaev, [J. Struct. Chem. 35, 115 (1994)], suitably modified for our
definition of the real spherical harmonics (m; > 0, mg > 0):

AéO = d%)O:
Al = V2 (=1)™dg,y, cos(mia),

A, = V2 (=1)"2dy, 0 cos(ma),
AL o= —V2d},, sin(mia),
Ay = V2, 5in(may),

Ainmm = (—1)"™(=1)"*{cos(myic) cos(may)[da + dg| — sin(mya) sin(may)[da — dBl},
Ainl_,m = (—1)"*{sin(myia) cos(may)[da — dB] + cos(myia) sin(may)[da + dB|},
Al,mlmg = —(—=1)"2{sin(my ) cos(may)[da + dp| + cos(myia) sin(may)[da — dpl},
Al_ml_m2 = cos(mya) cos(may)[da — dp] — sin(mi«) sin(maoy)[da + dp],

where dg = d',, _ .., dg = (=1)™d., _,,. and d is the rotation matrix about the y-axis

for complex spherical harmonics. See the routines genrlm, roteuler and ylmroty.

REVISION HISTORY:
Created December 2008 (JKD)
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7.175 rotaxang (Source File: rotaxang.f90)

INTERFACE:
subroutine rotaxang(eps,rot,det,v,th)
INPUT/OUTPUT PARAMETERS:

eps : zero vector tolerance (in,real)
rot : rotation matrix (in,real(3,3))
det : matrix determinant (out,real)

v : normalised axis vector (out,real(3))
th : rotation angle (out,real)
DESCRIPTION:

Given a rotation matrix

cosf + z%(1 —cosf) ay(l —cosh) + zsinf xz(1 — cos) — ysind
R(,0) = | zy(1 — cosf) — zsinf  cosf + y?(1 —cos) yz(1 —cosf) +zsinf |,
72(1 —cosf) +ysinh yz(1 —cosh) —xsind cosf + z%(1 — cos )

this routine determines the axis of rotation v and the angle of rotation 6. If R corresponds
to an improper rotation then only the proper part is used and det is set to —1. The rotation
convention follows the ‘right-hand rule’.

REVISION HISTORY:

Created December 2006 (JKD)

7.176 roteuler (Source File: roteuler.f90)

INTERFACE:
subroutine roteuler(rot,ang)
INPUT/OUTPUT PARAMETERS:

rot : rotation matrix (in,real(3,3))
ang : Euler angles (alpha, beta, gamma) (out,real(3))

DESCRIPTION:

Given a rotation matrix

R(a, B,7) =
cosy cos B cos a — sin -y sin « cosycosBsina +sinycosaw  — cosysin 5
—sinycosfcosa —cosysina —sinycosfsina +cosycosa  sinysing |,

sin 3 cos « sin (3 sin « cos 8

this routine determines the Euler angles, (a, 3,7). This corresponds to the so-called ‘y-
convention’, which involves the following successive rotations of the coordinate system:

136



1. The z1-, x9-, x3-axes are rotated anticlockwise through an angle o about the x3 axis
2. The zf-, x%-, z%-axes are rotated anticlockwise through an angle 8 about the z, axis
3. The z/-, 24-, z%j-axes are rotated anticlockwise through an angle v about the z axis

Note that the Euler angles are not necessarily unique for a given rotation matrix.

REVISION HISTORY:

Created May 2003 (JKD)
Fixed problem thanks to Frank Wagner, June 2013 (JKD)

7.177 rotrflm (Source File: rotrflm.f90)

INTERFACE:
subroutine rotrflm(rot,lmax,n,ld,rflml,rflm2)

INPUT/OUTPUT PARAMETERS:

rot : rotation matrix (in,real(3,3))

lmax : maximum angular momentum (in,integer)

n : number of functions to rotate (in,integer)
14 : leading dimension (in,integer)

rflml : coefficients of the real spherical harmonic expansion for each
function (in,real(ld,n))
rflm2 : coefficients of rotated functions (out,complex(ld,n))

DESCRIPTION:

Rotates a set of real functions

filr) = fi Rim(2)
Im

for all 4, given the coefficients f} and a rotation matrix R. This is done by first the
computing the Euler angles («, 3,7) of R™! (see routine roteuler) and then applying the
spherical harmonic rotation matrix generated by the routine rlmrot.

REVISION HISTORY:

Created December 2008 (JKD)
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7.178 rotzflm (Source File: rotzflm.f90)

INTERFACE:
subroutine rotzflm(rot,lmin,lmax,n,1ld,zflml,zf1lm2)

INPUT/OUTPUT PARAMETERS:

rot : rotation matrix (in,real(3,3))

Imin : minimum angular momentum (in,integer)

lmax : maximum angular momentum (in,integer)

n : number of functions to rotate (in,integer)
14 : leading dimension (in,integer)

zflml : coefficients of the complex spherical harmonic expansion for each
function (in,complex(1ld,n))
zf1lm2 : coefficients of rotated functions (out,complex(ld,n))

DESCRIPTION:

Rotates a set of complex functions

fie) = f1Yim(®)
lm

for all ¢, given the coefficients fﬁn and a rotation matrix R. This is done by first the
computing the Euler angles («, 3,7) of R™! (see routine roteuler) and then applying the
spherical harmonic rotation matrix generated by the routine ylmrot.

REVISION HISTORY:

Created April 2003 (JKD)
Modified, December 2008 (JKD)

7.179 rschrodapp (Source File: rschrodapp.f90)

INTERFACE:
subroutine rschrodapp(sol,l,nr,r,vr,p0,q0,ql,hp0)
INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

1 : angular momentum quantum number (in,integer)
nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

pO : m th energy derivative of P (in,real(nr))

g0 : m th energy derivative of Q (in,real(nr))

ql : radial derivative of q0 (in,real(nr))

hpO : H applied to P (out,real(nr))
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DESCRIPTION:

Applies the scalar relativistic radial Hamiltonian, H, to a radial wavefunction, ;. This is
an approximation since we assume P; is a scalar wavefunction, normalisable to unity. A
Hamiltonian which satisfies H P, = E'P, is given implicitly by

I(1+1)
QM2

1 d
HPl:[ +V:|Pl_Ql_Ql>
r dr

where V is the external potential, M = 1 — V/2¢? and @Q; is obtained from integrating the

coupled scalar relativistic equations.

REVISION HISTORY:

Created October 2003 (JKD)

7.180 rschroddme (Source File: rschroddme.f90)

INTERFACE:
subroutine rschroddme(sol,m,l,k,e,nr,r,vr,nn,p0,pl,q0,ql)
INPUT/O UTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

m : order of energy derivative (in,integer)
1 : angular momentum quantum number (in,integer)
: quantum number k, zero if Dirac eqn. is not to be used (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(anr))

nn : number of nodes (out,integer)

pO : m th energy derivative of P (out,real(nr))

pl : radial derivative of pO (out,real(nr))

90 : m th energy derivative of Q (out,real(nr))

ql : radial derivative of g0 (out,real(ar))
DESCRIPTION:

Finds the solution to the mth energy derivative of the scalar relativistic radial Schrodinger
equation using the routine rschrodint.

REVISION HISTORY:

Created June 2003 (JKD)
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7.181 rschrodint (Source File: rschrodint.f90)

INTERFACE:
subroutine rschrodint(sol,m,l,e,nr,r,vr,nn,pOp,p0,pl,q0,ql)
INPUT/OUTPUT PARAMETERS:

sol : speed of light in atomic units (in,real)

m : order of energy derivative (in,integer)

1 : angular momentum quantum number (in,integer)

e : energy (in,real)

nr : number of radial mesh points (in,integer)

r : radial mesh (in,real(nr))

vr : potential on radial mesh (in,real(nr))

nn : number of nodes (out,integer)

pOp : m-1 th energy derivative of P (in,real(nr))

pO : m th energy derivative of P (out,real(nr))

pl : radial derivative of pO (out,real(nr))

g0 : m th energy derivative of Q (out,real(nr))

gl : radial derivative of g0 (out,real(ur))
DESCRIPTION:

Integrates the mth energy derivative of the scalar relativistic radial Schrodinger equation
from r = 0 outwards. This involves using the predictor-corrector method to solve the
coupled first-order equations (in atomic units)

a4 pm) _, MQM™ 4 1pm
T

dr !
d my 1w  [l+1)
erl - rQl * 2Mr2

+ (V _ E) Pl(m) _ ’I?’L]Dl(m_l),

where V is the external potential, E is the eigenenergy and M = 1 — V/2¢2. Following the
convention of Koelling and Harmon, J. Phys. C: Solid State Phys. 10, 3107 (1977), the
functions P, and @); are defined by

P =rg
T odg
Ql_ZMdr’

where g; is the major component of the Dirac equation (see the routine rdiracint). Note
that in order to make the equations linear in energy, the full definition M = 1+ (E—V)/2c?
is not used. If m = 0 then the array pOp is not referenced.

REVISION HISTORY:

Created October 2003 (JKD)
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7.182 rtozflm (Source File: rtozflm.f90)

INTERFACE:
subroutine rtozflm(lmax,rflm,zflm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

rflm : coefficients of real spherical harmonic expansion
(in,real ((lmax+1)*%x2)))

zflm : coefficients of complex spherical harmonic expansion
(out,complex((Imax+1)*%2)))

DESCRIPTION:

Converts a real function, r,, expanded in terms of real spherical harmonics into a complex
spherical harmonic expansion, zy,:

éiOnm;+i(—1Y”n_nJ m >0
Zlm = %((_1)mrl—m - irlm) m<0 .
T'im m =0

See routine genrlm.

REVISION HISTORY:

Created April 2003 (JKD)

7.183 rvfcross (Source File: rvfcross.f90)

INTERFACE:

subroutine rvfcross(rvfmtl,rvfirl,rvfmt2,rvfir2,rvfmt3,rvfir3)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

rvfmtl : first input muffin-tin field (in,real (lmmaxvr,nrmtmax,natmtot,3))
rvfirl : first input interstitial field (in,real(ngtot,3))

rvfmt2 : second input muffin-tin field (in,real(lmmaxvr,nrmtmax,natmtot,3))
rvfir2 : second input interstitial field (in,real(ngtot,3))

rvimt3 : output muffin-tin field (out,real(lmmaxvr,nrmtmax,natmtot,3))
rvfir3 : output interstitial field (out,real(ngtot,3))
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DESCRIPTION:

Given two real vector fields, f; and f5, defined over the entire unit cell, this routine computes
the local cross product

fg(r) = f1(1‘) X fQ(I’).

REVISION HISTORY:

Created February 2007 (JKD)

7.184 sbesseldm (Source File: sbesseldm.f90)

INTERFACE:
subroutine sbesseldm(m,lmax,x,djl)

INPUT/OUTPUT PARAMETERS:

m : order of derivatve (in,integer)

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)

djl : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes the mth derivative of the spherical Bessel function of the first kind, j;(z), for

argument x and [ = 0,1,...,lpax. For > 1 this is done by repeatedly using the relations
d l
%jl(fc) = ;jl(ﬂf) — Ji+1(z)

i) = 2@ — (e,

While for x < 1 the series expansion of the Bessel function is used

o (2i +1)! m
(@=2 (—2)iil(2i + 1 — m)!(2i + 21 + D) e

This procedure is numerically stable and accurate to near machine precision for [ < 30 and
m < 6.

REVISION HISTORY:

Created March 2003 (JKD)
Modified to return an array of values, October 2004 (JKD)
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7.185 sbessel (Source File: sbessel.f90)

INTERFACE:
subroutine sbessel(lmax,x,jl)
INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)
jl1 : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes the spherical Bessel functions of the first kind, j;(x), for argument z and [ =
0,1,...,lnax. The recursion relation

20+1
x

Jiri(x) = Ji(x) = ji-1(w)

is used either downwards for x < [ or upwards for > [. For x < 1 the asymtotic form is

used .

. ~ X
@)~ S

This procedure is numerically stable and accurate to near machine precision for [ < 50.

REVISION HISTORY:

Created January 2003 (JKD)
Modified to return an array of values, October 2004 (JKD)
Improved stability, August 2006 (JKD)

7.186 sdelta (Source File: sdelta.f90)

INTERFACE:
real(8) function sdelta(stype,x)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
e : real argument (in,real)

DESCRIPTION:

Returns a normalised smooth approximation to the Dirac delta function. These functions
are defined such that
/ 6(z)dx = 1.

The effective width, w, of the delta function may be varied by using the normalising trans-
formation

3z /w)

w

bw(z) =

Currently implimented are:
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Gaussian
Methfessel-Paxton order 1
Methfessel-Paxton order 2
Fermi-Dirac

Square-wave impulse

R A e

Lorentzian

See routines stheta, sdelta mp, sdelta_fd and sdelta_sq.

REVISION HISTORY:
Created April 2003 (JKD)

7.187 getsdata (Source File: sdelta.f90)

INTERFACE:
subroutine getsdata(stype,sdescr)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
sdescr : smearing scheme description (out,character(256))

DESCRIPTION:

Returns a description of the smearing scheme as string sdescr up to 256 characters long.

REVISION HISTORY:
Created April 2003 (JKD)

7.188 sdelta_fd (Source File: sdelta_fd.f90)

INTERFACE:
real(8) function sdelta_fd(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Fermi-Dirac approximation to the Dirac delta function

~ e_"E

i(z) = m.

REVISION HISTORY:
Created April 2003 (JKD)
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7.189 sdelta_mp (Source File: sdelta_mp.f90)

INTERFACE:
real(8) function sdelta_mp(n,x)
INPUT/OUTPUT PARAMETERS:

n : order (in,integer)
x : real argument (in,real)

DESCRIPTION:

Returns the smooth approximation to the Dirac delta function of order N given by Meth-
fessel and Paxton, Phys. Rev. B 40, 3616 (1989),

N

o(x) = z_% Z.!(Zl_,ll\)/;H%(x)e_xz»

where H; is the jth-order Hermite polynomial. This function has the property

| wre - po.

where P(z) is any polynomial of degree 2N + 1 or less. The case N = 0 corresponds to
Gaussian smearing. This procedure is numerically stable and accurate to near machine
precision for N < 10.

REVISION HISTORY:
Created April 2003 (JKD)

7.190 sdelta_sq (Source File: sdelta_sq.f90)

INTERFACE:
real(8) function sdelta_sq(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the square-wave pulse approximation to the Dirac delta function

< (1l <1)2
5(“")_{0 |z > 1/2

REVISION HISTORY:
Created July 2008 (JKD)
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7.191 sfacmag (Source File: sfacmag.f90)

INTERFACE:
subroutine sfacmag
USES:

use modmain
use modpw

DESCRIPTION:

Outputs magnetic structure factors, i.e. the Fourier transform coefficients of each compo-
nent j of magnetization m(r),

FH) = [ drmy (et

to the files SFACMAG_j.OUT. The lattice coordinates (h,k,l) of H-vectors in this file are
transformed by the matrix vhmat. See also routines zftrf and genhvec.

REVISION HISTORY:

Created July 2010 (Alexey I. Baramnov)
Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov)

7.192 sfacrho (Source File: sfacrho.f90)

INTERFACE:
subroutine sfacrho
USES:

use modmain
use modpw

DESCRIPTION:

Outputs X-ray structure factors, i.e. the Fourier transform coefficients of the total electron
density

FH) = /ng’r p(r)eHr

to the file SFACRHO.OUT. The lattice coordinates (h, k,[) of the H-vectors in this file are
transformed by the matrix vhmat. If and energy window is set using the variable wsfac,
then only those states within the window are used to compute the density. See also routines
zftrf and genhvec.

REVISION HISTORY:

Created July 2010 (Alexey I. Baranov)
Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov)
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7.193 sortidx (Source File: sortidx.f90)

INTERFACE:
subroutine sortidx(n,a,idx)
INPUT/OUTPUT PARAMETERS:

n  : number of elements in array (in,integer)
a : real array (in,real(n))
idx : permutation index (out,integer(n))

DESCRIPTION:

Finds the permutation index idx which sorts the real array a into ascending order. No
sorting of the array a itself is performed. Uses the heapsort algorthim.

REVISION HISTORY:

Created October 2002 (JKD)
Included tolerance eps, April 2006 (JKD)

7.194 sphcover (Source File: sphcover.f90)

INTERFACE:
subroutine sphcover(n,tp)
INPUT/OUTPUT PARAMETERS:

n : number of required points (in,integer)
tp : (theta, phi) coordinates (out,real(2,n))

DESCRIPTION:

Produces a set of N points which cover the unit sphere nearly optimally. The points in
spherical (0, ¢) coordinates are generated using the explicit ‘golden section’ formula:

0. = arccos [1 — (k — %) 62]
o = (k—1)do,

where §z = 2/n and d¢ = w(1 — V/5).
REVISION HISTORY:

Created April 2008 (JKD)
Improved covering, October 2009 (JKD)
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7.195 sphcerd (Source File: spherd.f90)

INTERFACE:
subroutine sphcrd(v,r,tp)
INPUT/OUTPUT PARAMETERS:

v : input vector (in,real(3))
r : length of v (out,real)
tp : (theta, phi) coordinates (out,real(2))

DESCRIPTION:

Returns the spherical coordinates (r, 6, ¢) of a vector

v = (rsin(f) cos(¢), r sin(0) sin(¢), r cos(f)).

REVISION HISTORY:

Created October 2002 (JKD)

7.196 spline (Source File: spline.f90)

INTERFACE:
subroutine spline(n,x,1d,f,cf)
INPUT/OUTPUT PARAMETERS:

n : number of points (in,integer)

x : abscissa array (in,real(n))

1d : leading dimension (in,integer)

f : input data array (in,real(ld,n))

cf : cubic spline coefficients (out,real(3,n))

DESCRIPTION:

Calculates the coefficients of a cubic spline fitted to input data. In other words, given a
set of data points f; defined at x;, where ¢ = 1...n, the coefficients c} are determined such

that

yi(x) = fi + cll(a: — ;) + cé(x — xi)z + 0’3(3: — a:i)g’,

is the interpolating function for z € [x;, z;+1). The coefficients are determined piecewise by

fitting a cubic polynomial to adjacent points.

REVISION HISTORY:

Created November 2011 (JKD)
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7.197 stheta (Source File: stheta.f90)

INTERFACE:
real(8) function stheta(stype,x)
INPUT/OUTPUT PARAMETERS:

stype : smearing type (in,integer)
X : real argument (in,real)

DESCRIPTION:

Returns the Heaviside step function corresponding to the smooth approximation to the
Dirac delta function:

O(z) = /m dtb(t).

—0o0

See function sdelta for details.

REVISION HISTORY:

Created April 2003 (JKD)

7.198 stheta fd (Source File: stheta_fd.f90)

INTERFACE:
real(8) function stheta_fd(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Fermi-Dirac approximation to the Heaviside step function

REVISION HISTORY:

Created April 2003 (JKD)
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7.199 stheta_mp (Source File: stheta mp.f90)

INTERFACE:
real(8) function stheta_mp(n,x)
INPUT/OUTPUT PARAMETERS:

n : order (in,integer)
x : real argument (in,real)

DESCRIPTION:

Returns the smooth approximation to the Heaviside step function of order N given by
Methfessel and Paxton, Phys. Rev. B 40, 3616 (1989),
O(x) =1— Sy(z)

where

=z

(—1)* g2
Hoi z
i fr H@)e™™,

2

So(x) = %(1 ~ erf(x))

Sn(z) = So(x) +

and H; is the jth-order Hermite polynomial. This procedure is numerically stable and
accurate to near machine precision for N < 10.

REVISION HISTORY:
Created April 2003 (JKD)

7.200 stheta_sq (Source File: stheta_sq.f90)

INTERFACE:
real(8) function stheta_sq(x)
INPUT/OUTPUT PARAMETERS:

x : real argument (in,real)

DESCRIPTION:

Returns the Heaviside step function corresponding to the square-wave pulse approximation
to the Dirac delta function

. 0 r<—1/2
Oz)=¢ x+1/2 —-1/2<x<1/2
1 rz>1

REVISION HISTORY:
Created July 2008 (JKD)
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7.201 sumrule (Source File: sumrule.f90)

INTERFACE:
subroutine sumrule(dynq)
INPUT/OUTPUT PARAMETERS:
dynq : dynamical matrices on g-point set (in,real(nbph,nbph,nqgpt))
DESCRIPTION:

Applies the same correction to all the dynamical matrices such that the matrix for q = 0
satisfies the acoustic sum rule. In other words, the matrices are updated with

3
q q 0,0 0
Djj — Dy — E :Wk”k:;ivk;j
k=1

for all q, where w,g is the kth eigenvalue of the q = 0 dynamical matrix and v,g;i the ith
component of its eigenvector. The eigenvalues are assumed to be arranged in ascending
order. This ensures that the q = 0 dynamical matrix has 3 zero eigenvalues, which the
uncorrected matrix may not have due to the finite exchange-correlation grid.

REVISION HISTORY:
Created May 2005 (JKD)

7.202 symrf (Source File: symrf.f90)

INTERFACE:
subroutine symrf (lrstp,rfmt,rfir)
USES:
use modmain
INPUT/OUTPUT PARAMETERS:
lrstp : radial step length (in,integer)

rfmt : real muffin-tin function (inout,real(lmmaxvr,nrmtmax,natmtot))
rfir : real intersitial function (inout,real(ngtot))
DESCRIPTION:

Symmetrises a real scalar function defined over the entire unit cell using the full set of crystal
symmetries. In the muffin-tin of a particular atom the spherical harmonic coefficients of
every equivlent atom are rotated and averaged. The interstitial part of the function is first
Fourier transformed to G-space, and then averaged over each symmetry by rotating the
Fourier coefficients and multiplying them by a phase factor corresponding to the symmetry
translation.

REVISION HISTORY:
Created May 2007 (JKD)
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7.203 symrfir (Source File: symrfir.f90)

INTERFACE:

subroutine symrfir(ngv,rfir)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

ngv : number of G-vectors to be used for the Fourier space rotation
(in,integer)
rfir : real intersitial function (inout,real(ngtot))

DESCRIPTION:

Symmetrises a real scalar interstitial function. The function is first Fourier transformed to
G-space, and then averaged over each symmetry by rotating the Fourier coefficients and
multiplying them by a phase factor corresponding to the symmetry translation.

REVISION HISTORY:
Created July 2007 (JKD)

7.204 symrvf (Source File: symrvf.f90)

INTERFACE:

subroutine symrvf(lrstp,rvfmt,rvfir)
USES:

use modmain
INPUT/OUTPUT PARAMETERS:

lrstp : radial step length (in,integer)
rvimt : real muffin-tin vector field
(in,real (lmmaxvr,nrmtmax,natmtot,ndmag))
rvfir : real interstitial vector field (in,real(ngtot,ndmag))

DESCRIPTION:

Symmetrises a vector field defined over the entire unit cell using the full set of crystal
symmetries. If a particular symmetry involves rotating atom 1 into atom 2, then the spatial
and spin rotations of that symmetry are applied to the vector field in atom 2 (expressed
in spherical harmonic coefficients), which is then added to the field in atom 1. This is
repeated for all symmetry operations. The fully symmetrised field in atom 1 is then rotated
and copied to atom 2. Symmetrisation of the interstitial part of the field is performed by
symrvfir. See also symrfmt and findsym.

REVISION HISTORY:
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Created May 2007 (JKD)
Fixed problem with improper rotations, February 2008 (L. Nordstrom,
F. Bultmark and F. Cricchio)

7.205 symrvfir (Source File: symrvfir.f90)
subroutine symrvfir(ngv,rvfir) USES:

use modmain
INPUT/O UTPUT PARAMETERS:

ngv : number of G-vectors to be used for the Fourier space rotation
(in,integer)
rvfir : real interstitial vector function (inout,real(ngtot,ndmag))

DESCRIPTION:

Symmetrises a real interstitial vector function. See routines symrvf and symrfir for details.

REVISION HISTORY:

Created July 2007 (JKD)

7.206 symvect (Source File: symvect.f90)

INTERFACE:
subroutine symvect(tspin,vc)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tspin : .true. if the global spin rotations should be used instead of the
spatial rotations (in,logical)
Ve : vectors in Cartesian coordinates for all atoms (in,real(3,natmtot))
DESCRIPTION:

Symmetrises a 3-vector at each atomic site by rotating and averaging over equivalent atoms.
Depending on tspin, either the spatial or spin part of the crystal symmetries are used.

REVISION HISTORY:

Created June 2004 (JKD)
Modified for spin rotations, May 2008 (JKD)
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7.207 vecfbz (Source File: vecfbz.f90)

INTERFACE:
subroutine vecfbz(eps,bvec,vpl)

INPUT/OUTPUT PARAMETERS:

eps : zero component tolerance (in,real)

bvec : reciprocal lattice vectors (in,real(3,3))

vpl : input vector in lattice coordinates (inout,real(3))
DESCRIPTION:

Maps a vector in lattice coordinates to the first Brillouin zone. This is done by first removing
its integer components and then adding primitive reciprocal lattice vectors until the shortest
vector is found.

REVISION HISTORY:

Created September 2008 (JKD)

7.208 vecplot (Source File: vecplot.f90)

INTERFACE:
subroutine vecplot

DESCRIPTION:
Outputs a 2D or 3D vector field for plotting. The vector field can be the magnetisation

vector field, m; the exchange-correlation magnetic field, By.; or the electric field E = —V 1.
The magnetisation is obtained from the spin density matrix, p,g, by solving

(n(r)dap + o - m(r)),

N =

Pap(r) =

where n = tr p,g is the total density. In the case of 2D plots, the magnetisation vectors are
still 3D, but are in the coordinate system of the plane.

REVISION HISTORY:

Created August 2004 (JKD)
Included electric field plots, August 2006 (JKD)
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7.209 wavefmt (Source File: wavefmt.f90)

INTERFACE:

subroutine wavefmt (lrstp,lmax,ias,ngp,apwalm,evecfv,ld,wfmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

lrstp : radial step length (in,integer)

Imax : maximum angular momentum required (in,integer)
ias : joint atom and species number (in,integer)
ngp : number of G+p-vectors (in,integer)

apwalm : APW matching coefficients
(in, complex (ngkmax ,apwordmax , lmmaxapw,natmtot))

evecfv : first-variational eigenvector (in,complex(nmatmax))

14 : leading dimension (in,integer)

wimt : complex muffin-tin wavefunction passed in as real array
(out,real(2,1d,*))

DESCRIPTION:

Calculates the first-variational wavefunction in the muffin-tin in terms of a spherical har-
monic expansion. For atom « and a particular k-point p, the r-dependent (I, m)-coefficients
of the wavefunction for the ith state are given by

P (r) Z b Z A%, (G + p)usy(r) + Z b“’ﬁ V5 ()31,

where b'P is the ith eigenvector returned from routine eveqn; A %m(G + p) is the matching
coefficient; M;* is the order of the APW; g1 1s the APW radial function; N is the number of
local-orbitals; vf" is the jth local-orbital radial function; and (a, j,m) is a compound index
for the location of the local-orbital in the eigenvector. See routines genapwfr, genlofr,
match and eveqn.

REVISION HISTORY:

Created April 2003 (JKD)
Fixed description, October 2004 (C. Brouder)
Removed argument ist, November 2006 (JKD)

7.210 wigner3j (Source File: wigner3j.f90)

INTERFACE:
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real(8) function wigner3j(j1,j2,j3,m1,m2,m3)
INPUT/OUTPUT PARAMETERS:

j1, j2, j3 : angular momentum quantum numbers (in,integer)
ml, m2, m3 : magnetic quantum numbers (in,integer)

DESCRIPTION:

Returns the Wigner 3j-symbol. There are many equivalent formulae for the 3j-symbols,
the following provides high accuracy for j < 50

JioJ2 g3\ _
mip Mg M3
(_1)j1+j2+m3\/(]1 + m)! (jo + ma)! (43 +ma3)! (js — ms)! (1 — [ (jo —ma2)! Z

(G2 — j1 +J3)! (1 — g2 + 33)! (1 + jo — J3)! (1 +31 +Jz + J3)!

(Jo — J1 +33)! (J1 — g2 + J3)! (J1 + J2 — Js)!
(3 — g1 —ma + k)! (j3 — jo +m1 + k) (1 + j2 — js — k) K (1 — ma — k)! (o + ma — k)

k

where the sum is over all integers k for which the factorials in the summand are non-negative.

REVISION HISTORY:

Created November 2002 (JKD)

7.211 wigner3jf (Source File: wigner3jf.f90)

INTERFACE:
real(8) function wigner3jf(ji2,j22,j32,m12,m22,m32)
INPUT/OUTPUT PARAMETERS:

j12, j22, j32 : angular momentum quantum numbers times 2 (in,integer)
ml12, m22, m32 : magnetic quantum numbers times 2 (in,integer)

DESCRIPTION:

Returns the Wigner 3j-symbol for the case where the arguments may be fractional, i.e.
multiples of % The input parameters to this function are taken to be twice their actual
values, which allows them to remain integers. The formula used is identical to that in
wigner3j.

REVISION HISTORY:

Created January 2014 (JKD)
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7.212 wigner6j (Source File: wigner6j.f90)

INTERFACE:
real(8) function wigner6j(j1,j2,j3,k1,k2,k3)
INPUT/OUTPUT PARAMETERS:

j1, j2, j3 : angular momentum quantum numbers (in,integer)
k1, k2, k3 : angular momentum quantum numbers (in,integer)

DESCRIPTION:

Returns the Wigner 6j-symbol for integer arguments. This is computed using the Racah
formula:

(=D)"(n+1)!

{ii ﬁ g} = /A1 g2 73) A(j1 ko k3) A(kn g2 ks) A(ky ks j3) Z f(n) 7

n

where

f(n)=(n—j1—jo—gs)(n—j1—kas—ks)l (n— k1 —ja—k3)! (n— ki — ko — j3)!
X (j1+j2 + k1 + ko — n)! (jo + g3 + ko + ks — n)! (1 + js + k1 + ks — n)!
and
(a+b—0c)l(a—=b+c) (—a+b+c)!
(a+b+c+1)
is the triangle coefficient, and where the sum is over all integers n for which the factorials

in f(n) have non-negative arguments. The Wigner-6j function is zero unless each triad,
(j17273), (J1 ka2 ks), (k1 j2ks) and (ki ko j3), satifies the triangle inequalities:

A(a,b,c) =

lz—y| <z<x+y,

for triad (x,y,z). See, for example, A. Messiah, Quantum Mechanics, Vol. 2., 1061-1066
(1962).

REVISION HISTORY:

Created August 2009 (JKD)

7.213 writeefdu (Source File: writeefdu.f90)

INTERFACE:
subroutine writeefdu
USES:

use modmain
use moddftu
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DESCRIPTION:

Writes to file the linearisation energies for all radial functions used to calculate the Slater
integrals through a Yukawa potential.

REVISION HISTORY:
Created July 2008 (Francesco Cricchio)

7.214 writeefg (Source File: writeefg.f90)

INTERFACE:
subroutine writeefg
USES:

use modmain

DESCRIPTION:

Computes the electric field gradient (EFG) tensor for each atom, a, and writes it to the file
EFG.0UT along with its eigenvalues. The EFG is defined by

oo PV@|
K 8ri8rj r

=ra

where V. is the Coulomb potential with the [ = m = 0 component removed in each muffin-
tin. The derivatives are computed explicitly using the routine gradrfmt.

REVISION HISTORY:

Created May 2004 (JKD)
Fixed serious problem, November 2006 (JKD)

7.215 writeeval (Source File: writeeval.f90)

INTERFACE:
subroutine writeeval
USES:

use modmain

DESCRIPTION:

Outputs the second-variational eigenvalues and occupation numbers to the file EIGVAL . QUT.

REVISION HISTORY:
Created June 2003 (JKD)
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7.216 writefermi (Source File: writefermi.f90)

INTERFACE:
subroutine writefermi
USES:

use modmain

DESCRIPTION:

Writes the Fermi energy to the file EFERMI . QUT.

REVISION HISTORY:

Created March 2005 (JKD)

7.217 writegeom (Source File: writegeom.f90)

INTERFACE:

subroutine writegeom(fnum)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

fnum : file number for writing output (in,integer)

DESCRIPTION:

Outputs the lattice vectors and atomic positions to file, in a format which may be then used
directly in elk.in.

REVISION HISTORY:

Created January 2004 (JKD)

7.218 writeiad (Source File: writeiad.f90)

INTERFACE:
subroutine writeiad(fnum)

USES:
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use modmain
INPUT/OUTPUT PARAMETERS:
fnum : file number for writing output (in,integer)

DESCRIPTION:

Outputs the interatomic distances to file.

REVISION HISTORY:

Created May 2005 (JKD)

7.219 writeinfo (Source File: writeinfo.f90)

INTERFACE:
subroutine writeinfo (fnum)
USES:

use modmain
use modmpi
use moddftu
use modrdm

INPUT/OUTPUT PARAMETERS:
fnum : unit specifier for INFO.OUT file (in,integer)

DESCRIPTION:

Outputs basic information about the run to the file INFO.0UT. Does not close the file
afterwards.

REVISION HISTORY:

Created January 2003 (JKD)
Updated with DFT+U quantities July 2009 (FC)

7.220 writekpts (Source File: writekpts.f90)

INTERFACE:
subroutine writekpts

USES:
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use modmain

DESCRIPTION:

Writes the k-points in lattice coordinates, weights and number of G + k-vectors to the file
KPOINTS.OUT.

REVISION HISTORY:

Created June 2003 (JKD)

7.221 writelinen (Source File: writelinen.f90)

INTERFACE:
subroutine writelinen
USES:

use modmain

DESCRIPTION:

Writes the linearisation energies for all APW and local-orbital functions to the file LINENGY . OUT.

REVISION HISTORY:

Created February 2004 (JKD)

7.222 writepmat (Source File: writepmat.f90)

INTERFACE:
subroutine writepmat
USES:

use modmain
use modmpi

DESCRIPTION:

Calculates the momentum matrix elements using routine genpmat and writes them to direct
access file PMAT.OUT.

REVISION HISTORY:

Created November 2003 (Sharma)
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7.223 writestate (Source File: writestate.f90)

INTERFACE:
subroutine writestate
USES:

use modmain
use moddftu

DESCRIPTION:

Writes the charge density, potentials and other relevant variables to the file STATE.OQUT.
Note to developers: changes to the way the variables are written should be mirrored in
readstate.

REVISION HISTORY:

Created May 2003 (JKD)

7.224 writesym (Source File: writesym.f90)

INTERFACE:
subroutine writesym
USES:

use modmain

DESCRIPTION:

Outputs the Bravais, crystal and site symmetry matrices to files SYMLAT . OUT, SYMCRYS.QUT
and SYMSITE.OUT, respectively. Also writes out equivalent atoms and related crystal sym-
metries to EQATOMS . OUT.

REVISION HISTORY:

Created October 2002 (JKD)

7.225 writetm2du (Source File: writetm2du.f90)

INTERFACE:
subroutine writetm2du(fnum)

USES:
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use modmain
use moddftu
use modtest

DESCRIPTION:

Decompose the density matrix and the DFT+U Hartree-Fock energy in 2-index tensor
moments components, see Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:
Created October 2009 (F. Cricchio and L. Nordstrom)

7.226 writetm3du (Source File: writetm3du.f90)

INTERFACE:
subroutine writetm3du(fnum)
USES:

use modmain
use moddftu
use modtest

DESCRIPTION:

Decompose the density matrix and the DFT+U Hartree-Fock energy in 3-index tensor
moments components, see Phys. Rev. B 80, 035121 (2009).

REVISION HISTORY:
Created April 2008 (F. Cricchio and L. Nordstrom)

7.227 writevclijji (Source File: writevclijji.f90)

INTERFACE:
subroutine writevclijji
USES:

use modmain
use modmpi

DESCRIPTION:

Generates Coulomb matrix elements of the type (i — jj — i) and outputs them to the file
VCLIJJI.OUT.

REVISION HISTORY:
Created 2008 (Sharma)
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7.228 writevclijjk (Source File: writevclijjk.f90)

INTERFACE:
subroutine writevclijjk
USES:

use modmain
use modmpi

DESCRIPTION:

Generates Coulomb matrix elements of the type (i — jj — k) and outputs them to the file
VCLIJJK.OUT. Also writes the real diagonal of this matrix, (i — jj — i), to VCLIJJI.OUT.

REVISION HISTORY:

Created 2008 (Sharma)

7.229 writewiq2 (Source File: writewiq2.f90)

INTERFACE:
subroutine writewiq2
USES:

use modmain

DESCRIPTION:

Outputs the integrals of 1/¢? in the small parallelepiped around each g-point to the file
WIQ2.0UT. Note that the integrals are calculated after the g-point has been mapped to the
first Brillouin zone. See routine genwiq2.

REVISION HISTORY:

Created June 2005 (JKD)

7.230 xc_amO05 (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc)

INPUT/OUTPUT PARAMETERS:
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n : number of density points (in,integer)

rho : charge density (in,real(n))

grho : |grad rhol| (in,real(n))

g2rho : grad”2 rho (in,real(n))

g3rho : (grad rho).(grad |grad rhol) (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

VX : spin-unpolarised exchange potential (out,real(n))

ve : spin-unpolarised correlation potential (out,real(n))
DESCRIPTION:

Spin-unpolarised exchange-correlation potential and energy functional of R. Armiento and
A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).

REVISION HISTORY:

Created April 2005 (RAR); based on xc_pbe

7.231 xc_amO05_point (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_amO5_point(rho,s,u,v,ex,ec,vx,vc,pot)
INPUT/OUTPUT PARAMETERS:

rho : electron density (in,real)

s : gradient of n / (2 kF n)

u : gradn * grad | grad n | / (n**2 (2 kF)**3)

v : laplacian of density / (n**2 (2.d0*kf)**3)

ex : exchange energy density (out,real)

ec : correlation energy density (out,real)

vX : spin-unpolarised exchange potential (out,real)

vc : spin-unpolarised correlation potential (out,real)
DESCRIPTION:

Calculate the spin-unpolarised exchange-correlation potential and energy for the Armiento-
Mattsson 05 functional for a single point.

REVISION HISTORY:

Created April 2005 (RAR)
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7.232 xc_am05_ldax (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_am05_ldax(n,ex,vx)
INPUT/OUTPUT PARAMETERS:

n : electron density (in,real)
ex : exchange energy per electron (out,real)
vx : exchange potential (out,real)

DESCRIPTION:
Local density approximation exchange

REVISION HISTORY:

Created April 2005 (RAR)

7.233 xc_amO05_ldapwc (Source File: xc_am05.f90)

INTERFACE:
subroutine xc_am05_ldapwc(n,ec,vc)
]NPUT/O UTPUT PARAMETERS:

n : electron density (in,real)
ec : correlation energy per electron (out,real)
vc : correlation potential (out,real)

DESCRIPTION:

Correlation energy and potential of the Perdew-Wang parameterisation of the Ceperley-
Alder electron gas Phys. Rev. B 45, 13244 (1992) and Phys. Rev. Lett. 45, 566 (1980).
This is a clean-room implementation from paper.

REVISION HISTORY:

Created April 2005 (RAR)

7.234 xc_amO05_labertw (Source File: xc_am05.f90)

INTERFACE:

subroutine xc_am05_labertw(z,val)
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INPUT/OUTPUT PARAMETERS:

z : function argument (in,real)
val : value of lambert W function of z (out,real)

DESCRIPTION:

Lambert W-function using the method of Corless, Gonnet, Hare, Jeffrey and Knuth, Adv.
Comp. Math. 5, 329 (1996). The approach is based loosely on that in GNU Octave by N.
N. Schraudolph, but this implementation is for real values and the principal branch only.

REVISION HISTORY:

Created April 2005 (RAR)

7.235 xc_pbe (Source File: xc_pbe.f90)

INTERFACE:

subroutine xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho, &
g3up,g3dn, ex,ec,vxup,vxdn,vcup,vcdn)

INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)

kappa : parameter for large-gradient limit (in,real)
mu : gradient expansion coefficient (in,real)
beta : gradient expansion coefficient (in,real)

rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

grho : |grad rhol (in,real(n))
gup : lgrad rhoup| (in,real(n))
gdn : |grad rhodn| (in,real(n))

g2up : grad~2 rhoup (in,real(n))

g2dn : grad”2 rhodn (in,real(n))

g3rho : (grad rho).(grad |grad rhol) (in,real(n))
g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n))
g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy of the generalised gradient ap-
proximation functional of J. P. Perdew, K. Burke and M. Ernzerhof Phys. Rev. Lett. 77,
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3865 (1996) and 78, 1396(E) (1997). The parameter x, which controls the large-gradient
limit, can be set to 0.804 or 1.245 corresponding to the value in the original article or the
revised version of Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).

REVISION HISTORY:

Modified routines written by K. Burke, October 2004 (JKD)

7.236 xc_pwca (Source File: xc_pwca.f90)

INTERFACE:
subroutine xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy of the Perdew-Wang parameteri-
sation of the Ceperley-Alder electron gas: Phys. Rev. B 45, 13244 (1992) and Phys. Rev.
Lett. 45, 566 (1980).

REVISION HISTORY:

Created January 2004 (JKD)
Rewrote, October 2011 (JKD)

7.237 xc_pzca (Source File: xc_pzca.f90)

INTERFACE:
subroutine xc_pzca(n,rho,ex,ec,vx,vc)

INPUT/OUTPUT PARAMETERS:
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n : number of density points (in,integer)
rho : charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vx : exchange potential (out,real(n))

vc : correlation potential (out,real(n))
DESCRIPTION:

Spin-unpolarised exchange-correlation potential and energy of the Perdew-Zunger parame-
terisation of Ceperley-Alder electron gas: Phys. Rev. B 23, 5048 (1981) and Phys. Rev.
Lett. 45, 566 (1980).

REVISION HISTORY:

Created October 2002 (JKD)

7.238 xc_vbh (Source File: xc_vbh.f90)

INTERFACE:
subroutine xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)
rhoup : spin-up charge density (in,real(n))
rhodn : spin-down charge density (in,real(n))

ex : exchange energy density (out,real(n))

ec : correlation energy density (out,real(n))

vxup : spin-up exchange potential (out,real(n))

vxdn : spin-down exchange potential (out,real(n))

vcup : spin-up correlation potential (out,real(n))

vcdn : spin-down correlation potential (out,real(n))
DESCRIPTION:

Spin-polarised exchange-correlation potential and energy functional of von Barth and Hedin:
J. Phys. C'5, 1629 (1972). Note that the implementation is in Rydbergs in order to follow
the paper step by step, at the end the potential and energy are converted to Hartree.

REVISION HISTORY:

Created September 2007 (F. Cricchio)
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7.239 xc_xalpha (Source File: xc_xalpha.f90)

INTERFACE:
subroutine xc_xalpha(n,rho,exc,vxc)
INPUT/OUTPUT PARAMETERS:

n : number of density points (in,integer)

rho : charge density (in,real(n))

exc : exchange-correlation energy density (out,real(n))
vxc : exchange-correlation potential (out,real(mn))

DESCRIPTION:

X, approximation to the exchange-correlation potential and energy density. See J. C.
Slater, Phys. Rev. 81, 385 (1951).

REVISION HISTORY:

Modified an ABINIT routine, September 2006 (JKD)

7.240 ylmrot (Source File: ylmrot.f90)

INTERFACE:
subroutine ylmrot(p,ang,lmax,1d,d)
INPUT/OUTPUT PARAMETERS:

P : if p=-1 then the rotation matrix is improper (in,integer)
ang : Euler angles; alpha, beta, gamma (in,real(3))
lmax : maximum angular momentum (in,integer)

1d : leading dimension (in,integer)
d : complex spherical harmonic rotation matrix (out,complex(1ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of complex spherical harmonics given the three
Euler angles, («, 3,7), and the parity, p, of the rotation. The matrix is given by the formula

Diﬂlmg (o, B,7) = d' (ﬁ)e—i(m1a+m2”l)7

mima

where d is the rotation matrix about the y-axis. For improper rotations, i.e. those which
are a combination of a rotation and inversion, D is modified with DinlmQ — (—l)lDime.
See the routines roteuler and ylmroty.

REVISION HISTORY:

Created December 2008 (JKD)
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7.241 ylmroty (Source File: ylmroty.f90)

INTERFACE:
subroutine ylmroty(beta,lmax,ld,dy)
INPUT/OUTPUT PARAMETERS:

beta : rotation angle about y-axis (in,real)
lmax : maximum angular momentum (in,integer)

ld : leading dimension (in,integer)
dy : rotation matrix for complex spherical harmonics (out,real(ld,*))
DESCRIPTION:

Returns the rotation matrix in the basis of complex spherical harmonics for a rotation of
angle 8 about the y-axis. This matrix is real and is given by the formula

dy s (B) =1+ m) (L — ma)(L+m2)! (1 — m2)!]/?
2(l—k)—mao+m 2k+mao—m
(cos g) (=) mmartm <sin g) o
X Z(—l)k )
k k!(l+m1—k:)!(l—mg—k)!(mg—ml—i—k)!

where k£ runs through all integer values for which the factorials exist.

REVISION HISTORY:

Created December 2008 (JKD)

7.242 z2mctm (Source File: z2mctm.f90)

INTERFACE:
subroutine z2mctm(a,b,c)

INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))

b : input matrix 2 (in,complex(2,2))

c : output matrix (out,complex(2,2))
DESCRIPTION:

Multiplies the conjugate transpose of one complex 2 x 2 matrix with another. Note that
the output matrix cannot be one of the input matrices.

REVISION HISTORY:

Created October 2007 (JKD)
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7.243 z2mmct (Source File: z2mmct.f90)

INTERFACE:
subroutine z2mmct(a,b,c)

INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))

b : input matrix 2 (in,complex(2,2))

c : output matrix (out,complex(2,2))
DESCRIPTION:

Multiplies a 2 x 2 matrix with the conjugate transpose of another. Note that the output
matrix cannot be one of the input matrices.

REVISION HISTORY:

Created October 2007 (JKD)

7.244 z2mm (Source File: z2mm.f90)

INTERFACE:
subroutine z2mm(a,b,c)

INPUT/OUTPUT PARAMETERS:

a : input matrix 1 (in,complex(2,2))

b : input matrix 2 (in,complex(2,2))

c : output matrix (out,complex(2,2))
DESCRIPTION:

Multiplies two complex 2 x 2 matrices. Note that the output matrix cannot be one of the
input matrices.

REVISION HISTORY:

Created October 2007 (JKD)

7.245 zbessela (Source File: zbessela.f90)

INTERFACE:

subroutine zbessela(lmax,x,a)
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INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)
a : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes variations of the spherical Bessel function, a;(x) = i'j;(iz), for real argument x
and [ =0,1,...,lnax. The recursion relation

20+1

Jiv1(x) = Ji(x) + ji-1(z)

is used upwards. For starting values there are

ao() = TR g () = 2

ap(z) — cosh(z)

. For x <« 1 the asymtotic forms

(=)'

wl®) ™ Greon

are used.

REVISION HISTORY:

Created April 2008 from sbessel routine (Lars Nordstrom)

7.246 zbesselb (Source File: zbesselb.f90)

INTERFACE:
subroutine zbesselb(lmax,x,b)
INPUT/OUTPUT PARAMETERS:

lmax : maximum order of Bessel function (in,integer)

X : real argument (in,real)
b : array of returned values (out,real(0:1lmax))
DESCRIPTION:

Computes variations of the spherical Bessel function b;(x) = ilhl(l)(ix), for real argument x
and [ =0,1,...,lnax. The recursion relation

20+1

Jiv1(x) = Ji(x) + ji-1(z)

is used upwards. For starting values there are




For x < 1 the asymtotic forms

are used.

—(20—-1)!
o)~

REVISION HISTORY:

Created April 2008 from sbessel routine (Lars Nordstrom)

7.247 zfinp (Source File: zfinp.f90)

INTERFACE:

complex(8) function zfinp(tsh,zfmtl,zfirl,zfmt2,zfir2)

USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tsh

zfmtl

zfirl

zfmt2

zfir2 .

DESCRIPTION:

.true. if the muffin-tin functions are in spherical harmonics

(in,logical)

: first complex function in spherical harmonics/coordinates for all

muffin-tins (in,complex(lmmaxvr,nrcmtmax,natmtot))

: first complex interstitial function in real-space

(in, complex(ngtot))

second complex function in spherical harmonics/coordinates for all
muffin-tins (in,complex(lmmaxvr,nrcmtmax,natmtot))

second complex interstitial function in real-space
(in,complex(ngtot))

Calculates the inner product of two complex fuctions over the entire unit cell. The muffin-
tin functions should be stored on the coarse radial grid and have angular momentum cut-off
lmaxvr. In the intersitial region, the integrand is multiplied with the characteristic function,
to remove the contribution from the muffin-tin. See routines zfmtinp and gencfun.

REVISION HISTORY:

Created July 2004 (Sharma)
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7.248 zflmconj (Source File: zflmconj.f90)

INTERFACE:
subroutine zflmconj(lmax,zflml,zf1lm2)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

zflml : coefficients of input complex spherical harmonic expansion
(in, complex ((lmax+1)*%2)))

zflm2 : coefficients of output complex spherical harmonic expansion
(out,complex((Imax+1)*%2)))

DESCRIPTION:

Returns the complex conjugate of a function expanded in spherical harmonics. In other
words, given the input function coefficients 2, the routine returns z;,, = (—1)"z/_ . so

that *
Ilm Ilm

for all (0, ¢).

REVISION HISTORY:

Created April 2004 (JKD)

7.249 zfmtinp (Source File: zfmtinp.f90)

INTERFACE:
complex(8) function zfmtinp(tsh,nr,nri,r,zfmtl,zfmt2)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

tsh : .true. if the functions are in spherical harmonics (in,logical)
nr : number of radial mesh points (in,integer)

nri : number of points on the inner part of the muffin-tin (in,integer)
r : radial mesh (in,real(ar))

zfmtl : first complex muffin-tin function in spherical harmonics or
coordinates (in,complex(lmmaxvr,nr))

zfmt2 : second complex muffin-tin function in spherical harmonics or
coordinates (in,complex(lmmaxvr,nr))
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DESCRIPTION:

Calculates the inner product of two complex fuctions in the muffin-tin. In other words,
given two complex functions of the form

rﬂdX

=0 m=—1
the function returns

I_iafZ/ r)f2 (r)r? dr .

=0 m=—1
Note that if tsh is .false. the functions are in spherical coordinates rather than spherical
harmonics. In this case I is multiplied by 47/ (Imax + 1)

REVISION HISTORY:

Created November 2003 (Sharma)
Modified, September 2013 (JKD)

7.250 zftrf (Source File: zftrf.f90)

INTERFACE:
subroutine zftrf (npv,ivp,vpc,rfmt,rfir,zfp)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

npv : number of P-vectors (in,integer)
ivp : integer coordinates of the P-vectors (in,integer(3,npv))
vpc : P-vectors in Cartesian coordinates (in,real(3,npv))

rfmt : real muffin-tin function (in,real(Ilmmaxvr,nrmtmax,natmtot))

rfir : real interstitial function (in,real(ngtot))

zfp : Fourier expansion coefficients of the real-space function
(out, complex (npv))

DESCRIPTION:

Given a real function periodic in the unit cell, f(r), this routine calculates its complex
Fourier expansion coefficients:

~ . 7 ; D fo
- slz/dgrf(r)(%(r)e_lp'ur 46 ~ ¢ e Z(—i)lYlm(P)/O dr 2 ji(|P|r) £, (r),

Ilm

where © is the smooth characteristic function of the interstitial region, € is the unit cell
volume and R, is the muffin-tin radius of atom «.

REVISION HISTORY:
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Created July 2010 (Alexey I. Baramnov)
Modified, November 2010 (JKD)

7.251 zpotclmt (Source File: zpotclmt.f90)

INTERFACE:
subroutine zpotclmt(nr,nri,r,zrhomt,zvclmt)
USES:

use modmain

INPUT/OUTPUT PARAMETERS:

nr : number of radial mesh points (in,integer)

nri : number of points on inner part of muffin-tin (in,integer)

T : radial mesh (in,real(ar))

zrhomt : muffin-tin charge density (in,complex(lmmaxvr,nr))

zvclmt : muffin-tin Coulomb potential (out,complex(lmmaxvr,nr))
DESCRIPTION:

Solves the Poisson equation for the charge density contained in an isolated muffin-tin using
the Green’s function approach. In other words, the spherical harmonic expansion of the
Coulomb potential, Vj,,, is obtained from the density expansion, py,, by

4 I 142 B pim (1)
Vim (1) = TR <rl+1/0 Pt (7)1 dr/—H“l/T ;7171 dr’

where R is the muflin-tin radius.

REVISION HISTORY:

Created April 2003 (JKD)

7.252 zpotcoul (Source File: zpotcoul.f90)

INTERFACE:

subroutine zpotcoul(nr,nri,ldl,r,igp0,gpc, jlgpr,ylmgp,sfacgp,zrhoir,1d2, &
zvclmt ,zvclir,zrhoO)

USES:

use modmain
use modphonon

INPUT/OUTPUT PARAMETERS:
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nr : number of radial points for each species (in,integer(nspecies))

nri : number of points on inner part of muffin-tin (in,integer(nspecies))

141 : leading dimension (in,integer)

r : radial mesh for each species (in,real(ldl,nspecies))

igp0 : index of the shortest G+p-vector (in,integer)

gpc : Gtp-vector lengths (in,real(ngvec))

jlgpr : spherical Bessel functions for evergy G+p-vector and muffin-tin
radius (in,real(0:1lnpsd,ngvec,nspecies))

ylmgp : spherical harmonics of the G+p-vectors (in,complex(lmmaxvr,ngvec))

sfacgp : structure factors of the G+p-vectors (in,complex(ngvec,natmtot))

zrhoir : interstitial charge density (in,complex(ngtot))

142 : leading dimension (in,integer)

zvclmt : muffin-tin Coulomb potential, with the contribution from the
isolated muffin-tin density precalculated and passed in
(inout, complex (lmmaxvr,1d2,natmtot))

zvclir : interstitial Coulomb potential (out,complex(ngtot))

zrho0 : G+p=0 term of the pseudocharge density (out,complex)

DESCRIPTION:

Calculates the Coulomb potential of a complex charge density by solving Poisson’s equation
using the method of M. Weinert, J. Math. Phys. 22, 2433 (1981). First, the multipole
moments of the muffin-tin charge are determined for the jth atom of the ¢th species by

R;
MT _ 1+2
Qijilm = /0 T pijam (1) dr + 2i;Yo0 610

where R; is the muffin-tin radius and z;; is a point charge located at the atom center (usually
the nuclear charge, which should be taken as negative). Next, the multipole moments of
the continuation of the interstitial density, p', into the muffin-tin are found with

qgj;lm = 47”'lRﬁ+3 Z ]Hggﬁi)pl((}) exp(iG - rij)iﬁjn((;‘.),
G T

remembering that
. jl—&-n(l‘) 1
1 =
Th0  zn PRI ITh

should be used for the case G = 0. A pseudocharge is now constructed which is equal to
the real density in the interstitial region and whose multipoles are the difference between
the real and interstitial muffin-tin multipoles. This pseudocharge density is smooth in the
sense that it can be expanded in terms of the finite set of G-vectors. In each muffin-tin the
pseudocharge has the form

1 r\! 2\ Vi
P _ I N P o
pij(r) =p(r—ry) + E pij;lmiRé_‘_g <R1> (1 - R?) Yim(T)

lm

where

b (20 +2N; +3)! I
Pijiim = SN N 2; T (qij?le B qij;lm)
NN;I(20+ 1)1
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and N; ~ %RiGmax is generally a good choice. The pseudocharge in reciprocal space is
given by

Ji GR; . -
F(@) =7(@)+ 5 2N QRz) e i (G 151G

ig;lm

which may be used for solving Poisson’s equation directly

4l (G) G>0
VP(G){O G=0"

The usual Green’s function approach is then employed to determine the potential in the
muffin-tin sphere due to charge in the sphere. In other words

4 1 " 142 R leT (r) 1z
VMT _ / MT AW/ d / 15km dr’ (] s
zg,lm(r) 2 +1 (TlJrl pzy lm( ) +r . 7”/171 T + YE)O r 1,0

where the last term is the monopole arising from the point charge. All that remains is to
add the homogenous solution of Poisson’s equation,

-3 Vit (7 ,)lnm@),

to the muffin-tin potential so that it is continuous at the muffin-tin boundary. Therefore
the coefficients, pZ-Hj,lm, are given by

vH

ij;lm T

=4mi' Y " ji(Gr)VT(G) exp(iG - 1ij) Vi, (G) — V)

J; lm(R )
G

Finally note that the G-vectors passed to the routine can represent vectors with a non-zero
offset, G + p say, which is required for calculating Coulomb matrix elements.

REVISION HISTORY:

Created April 2003 (JKD)

7.253 ztorflm (Source File: ztorfim.f90)

INTERFACE:
subroutine ztorflm(lmax,zflm,rflm)
INPUT/OUTPUT PARAMETERS:

lmax : maximum angular momentum (in,integer)

zflm : coefficients of complex spherical harmonic expansion
(in, complex ((lmax+1)*%*2)))

rflm : coefficients of real spherical harmonic expansion
(out,real ((lmax+1)**2)))
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DESCRIPTION:

Converts a real function, zj,,, expanded in terms of complex spherical harmonics into a real
spherical harmonic expansion, 7,:

5R(zm + (=1)"2m)  m >0

ﬁ%
Tim = 75 S(=2im + (=1)"21-m) M <0 .
gte(Zlm) m =0

See routine genrlm.

REVISION HISTORY:

Created April 2003 (JKD)

180



	Introduction
	Acknowledgments
	Units
	Compiling and running Elk
	Compiling the code
	Parallelism in Elk

	Linking with the Libxc functional library
	Running the code
	Species files
	Examples


	Input blocks
	atoms
	autokpt
	autolinengy
	autoswidth
	avec
	beta0
	betamax
	bfieldc
	broydpm
	c_tb09
	chgexs
	cmagz
	deltaem
	deltaph
	deltast
	dft+u
	dlefe
	dosmsum
	dosssum
	epsband
	epschg
	epsengy
	epsforce
	epslat
	epsocc
	epspot
	epsstress
	emaxelnes
	emaxrf
	fracinr
	fsmtype
	ftmtype
	fxclrc
	fxtype
	gmaxrf
	gmaxvr
	hdbse
	highq
	hmaxvr
	hxbse
	hybrid
	hybridc
	intraband
	isgkmax
	kstlist
	latvopt
	lmaxapw
	lmaxdos
	lmaxinr
	lmaxmat
	lmaxvr
	lmirep
	lorbcnd
	lorbordc
	lradstp
	maxitoep
	maxscl
	mixtype
	mixsdb
	mixsdp
	molecule
	momfix
	mommtfix
	mstar
	mustar
	ncbse
	ncgga
	ndspem
	nempty
	ngridk
	ngridq
	nosource
	notes
	npmae
	ntemp
	nvbse
	nwrite
	optcomp
	phwrite
	plot1d
	plot2d
	plot3d
	primcell
	radkpt
	readadu
	reducebf
	reduceh
	reducek
	reduceq
	rgkmax
	rotavec
	scale
	scale1/2/3
	scissor
	scrpath
	socscf
	spincore
	spinorb
	spinpol
	spinsprl
	sppath
	ssdph
	stype
	swidth
	tasks
	tau0atp
	tau0latv
	tauoep
	taufsm
	tfibs
	tforce
	tmwrite
	trimvg
	tefvit
	tefvr
	tmomfix
	tshift
	vhmat
	vklem
	vkloff
	vqlss
	wplot
	wsfac
	xctype

	Contributing to Elk
	Licensing

	Routine/Function Prologues
	allatoms (Source File: allatoms.f90)
	atom (Source File: atom.f90)
	atpstep (Source File: atpstep.f90)
	axangrot (Source File: axangrot.f90)
	axangsu2 (Source File: axangsu2.f90)
	bandstr (Source File: bandstr.f90)
	brzint (Source File: brzint.f90)
	charge (Source File: charge.f90)
	checkmt (Source File: checkmt.f90)
	clebgor (Source File: clebgor.f90)
	connect (Source File: connect.f90)
	dielectric (Source File: dielectric.f90)
	dos (Source File: dos.f90)
	elfplot (Source File: elfplot.f90)
	eliashberg (Source File: eliashberg.f90)
	energy (Source File: energy.f90)
	energyfdu (Source File: energyfdu.f90)
	erf (Source File: erf.f90)
	eulerrot (Source File: eulerrot.f90)
	eveqn (Source File: eveqn.f90)
	eveqnfv (Source File: eveqnfv.f90)
	eveqnfvr (Source File: eveqnfvr.f90)
	factnm (Source File: factnm.f90)
	factr (Source File: factr.f90)
	fderiv (Source File: fderiv.f90)
	findband (Source File: findband.f90)
	findlambdadu (Source File: findlambdadu.f90)
	findngkmax (Source File: findngkmax.f90)
	findprimcell (Source File: findprimcell.f90)
	findswidth (Source File: findswidth.f90)
	findsymcrys (Source File: findsymcrys.f90)
	findsym (Source File: findsym.f90)
	findsymlat (Source File: findsymlat.f90)
	flushifc (Source File: flushifc.f90)
	force (Source File: force.f90)
	forcek (Source File: forcek.f90)
	fsmfield (Source File: fsmfield.f90)
	fsmooth (Source File: fsmooth.f90)
	fyukawa0 (Source File: fyukawa0.f90)
	fyukawa (Source File: fyukawa.f90)
	gaunt (Source File: gaunt.f90)
	gauntyry (Source File: gauntyry.f90)
	gcd (Source File: gcd.f90)
	genafieldt (Source File: genafieldt.f90)
	genapwfr (Source File: genapwfr.f90)
	gencfun (Source File: gencfun.f90)
	gencore (Source File: gencore.f90)
	genfdu (Source File: genfdu.f90)
	genfdufr (Source File: genfdufr.f90)
	gengkvec (Source File: gengkvec.f90)
	gengvec (Source File: gengvec.f90)
	genidxlo (Source File: genidxlo.f90)
	genlofr (Source File: genlofr.f90)
	genpmatc (Source File: genpmatc.f90)
	genpmat (Source File: genpmat.f90)
	genppts (Source File: genppts.f90)
	genrlm (Source File: genrlm.f90)
	genrmesh (Source File: genrmesh.f90)
	gensdmat (Source File: gensdmat.f90)
	gensfacgp (Source File: gensfacgp.f90)
	genshtmat (Source File: genshtmat.f90)
	genspchi0 (Source File: genspchi0.f90)
	genvclijji (Source File: genvclijji.f90)
	genvclijjk (Source File: genvclijjk.f90)
	genveedu (Source File: genveedu.f90)
	genvmatmt (Source File: genvmatmt.f90)
	genvsig (Source File: genvsig.f90)
	genwfsv (Source File: genwfsv.f90)
	genwiq2 (Source File: genwiq2.f90)
	genylm (Source File: genylm.f90)
	genylmg (Source File: genylmg.f90)
	genzrho (Source File: genzrho.f90)
	getevecfv (Source File: getevecfv.f90)
	getvclijji (Source File: getvclijji.f90)
	getvclijjk (Source File: getvclijjk.f90)
	ggair_1 (Source File: ggair_1.f90)
	ggair_2a (Source File: ggair_2a.f90)
	ggair_2b (Source File: ggair_2b.f90)
	ggair_sp_1 (Source File: ggair_sp_1.f90)
	ggair_sp_2a (Source File: ggair_sp_2a.f90)
	ggair_sp_2b (Source File: ggair_sp_2b.f90)
	ggamt_1 (Source File: ggamt_1.f90)
	ggamt_2a (Source File: ggamt_2a.f90)
	ggamt_2b (Source File: ggamt_2b.f90)
	ggamt_sp_1 (Source File: ggamt_sp_1.f90)
	ggamt_sp_2a (Source File: ggamt_sp_2a.f90)
	ggamt_sp_2b (Source File: ggamt_sp_2b.f90)
	gndstate (Source File: gndstate.f90)
	gradrfmt (Source File: gradrfmt.f90)
	gradzfmt (Source File: gradzfmt.f90)
	gridsize (Source File: gridsize.f90)
	hermite (Source File: hermite.f90)
	hmlaa (Source File: hmlaa.f90)
	hmlistl (Source File: hmlistl.f90)
	hmlrad (Source File: hmlrad.f90)
	i3mdet (Source File: i3mdet.f90)
	i3minv (Source File: i3minv.f90)
	i3mtv (Source File: i3mtv.f90)
	init0 (Source File: init0.f90)
	init1 (Source File: init1.f90)
	linengy (Source File: linengy.f90)
	lopzflm (Source File: lopzflm.f90)
	massnucl (Source File: massnucl.f90)
	match (Source File: match.f90)
	mixadapt (Source File: mixadapt.f90)
	mixpack (Source File: mixpack.f90)
	mixpulay (Source File: mixpulay.f90)
	randomu (Source File: modrandom.f90)
	xcifc (Source File: modxcifc.f90)
	getxcdata (Source File: modxcifc.f90)
	moment (Source File: moment.f90)
	mossbauer (Source File: mossbauer.f90)
	mtdmin (Source File: mtdmin.f90)
	nfftifc (Source File: nfftifc.f90)
	nonlinopt (Source File: nonlinopt.f90)
	occupy (Source File: occupy.f90)
	olpistl (Source File: olpistl.f90)
	olprad (Source File: olprad.f90)
	pade (Source File: pade.f90)
	plot1d (Source File: plot1d.f90)
	plot2d (Source File: plot2d.f90)
	plot3d (Source File: plot3d.f90)
	polynom (Source File: polynom.f90)
	potcoul (Source File: potcoul.f90)
	potks (Source File: potks.f90)
	potplot (Source File: potplot.f90)
	pottm2 (Source File: pottm2.f90)
	pottm3 (Source File: pottm3.f90)
	potxc (Source File: potxc.f90)
	r3cross (Source File: r3cross.f90)
	r3frac (Source File: r3frac.f90)
	r3mdet (Source File: r3mdet.f90)
	r3minv (Source File: r3minv.f90)
	r3mm (Source File: r3mm.f90)
	r3mmt (Source File: r3mmt.f90)
	r3mtm (Source File: r3mtm.f90)
	r3mtv (Source File: r3mtv.f90)
	r3mv (Source File: r3mv.f90)
	radnucl (Source File: radnucl.f90)
	rdiracdme (Source File: rdiracdme.f90)
	rdirac (Source File: rdirac.f90)
	rdiracint (Source File: rdiracint.f90)
	rdmdedc (Source File: rdmdedc.f90)
	rdmdedn (Source File: rdmdedn.f90)
	rdmdexcdc (Source File: rdmdexcdc.f90)
	rdmdexcdn (Source File: rdmdexcdn.f90)
	rdmdkdc (Source File: rdmdkdc.f90)
	rdmdtsdn (Source File: rdmdtsdn.f90)
	rdmenergy (Source File: rdmenergy.f90)
	rdmengyxc (Source File: rdmengyxc.f90)
	rdmentropy (Source File: rdmentropy.f90)
	rdmeval (Source File: rdmeval.f90)
	rdmft (Source File: rdmft.f90)
	rdmminc (Source File: rdmminc.f90)
	rdmminn (Source File: rdmminn.f90)
	rdmvaryc (Source File: rdmvaryc.f90)
	rdmvaryn (Source File: rdmvaryn.f90)
	rdmwritededn (Source File: rdmwritededn.f90)
	rdmwriteengy (Source File: rdmwriteengy.f90)
	readfermi (Source File: readfermi.f90)
	readinput (Source File: readinput.f90)
	readstate (Source File: readstate.f90)
	reciplat (Source File: reciplat.f90)
	rfinp (Source File: rfinp.f90)
	rfinterp (Source File: rfinterp.f90)
	rfmtctof (Source File: rfmtctof.f90)
	rfmtinp (Source File: rfmtinp.f90)
	rhocore (Source File: rhocore.f90)
	rhoinit (Source File: rhoinit.f90)
	rhomagk (Source File: rhomagk.f90)
	rhomagsh (Source File: rhomagsh.f90)
	rhonorm (Source File: rhonorm.f90)
	rhoplot (Source File: rhoplot.f90)
	rlmrot (Source File: rlmrot.f90)
	rotaxang (Source File: rotaxang.f90)
	roteuler (Source File: roteuler.f90)
	rotrflm (Source File: rotrflm.f90)
	rotzflm (Source File: rotzflm.f90)
	rschrodapp (Source File: rschrodapp.f90)
	rschroddme (Source File: rschroddme.f90)
	rschrodint (Source File: rschrodint.f90)
	rtozflm (Source File: rtozflm.f90)
	rvfcross (Source File: rvfcross.f90)
	sbesseldm (Source File: sbesseldm.f90)
	sbessel (Source File: sbessel.f90)
	sdelta (Source File: sdelta.f90)
	getsdata (Source File: sdelta.f90)
	sdelta_fd (Source File: sdelta_fd.f90)
	sdelta_mp (Source File: sdelta_mp.f90)
	sdelta_sq (Source File: sdelta_sq.f90)
	sfacmag (Source File: sfacmag.f90)
	sfacrho (Source File: sfacrho.f90)
	sortidx (Source File: sortidx.f90)
	sphcover (Source File: sphcover.f90)
	sphcrd (Source File: sphcrd.f90)
	spline (Source File: spline.f90)
	stheta (Source File: stheta.f90)
	stheta_fd (Source File: stheta_fd.f90)
	stheta_mp (Source File: stheta_mp.f90)
	stheta_sq (Source File: stheta_sq.f90)
	sumrule (Source File: sumrule.f90)
	symrf (Source File: symrf.f90)
	symrfir (Source File: symrfir.f90)
	symrvf (Source File: symrvf.f90)
	symrvfir (Source File: symrvfir.f90)
	symvect (Source File: symvect.f90)
	vecfbz (Source File: vecfbz.f90)
	vecplot (Source File: vecplot.f90)
	wavefmt (Source File: wavefmt.f90)
	wigner3j (Source File: wigner3j.f90)
	wigner3jf (Source File: wigner3jf.f90)
	wigner6j (Source File: wigner6j.f90)
	writeefdu (Source File: writeefdu.f90)
	writeefg (Source File: writeefg.f90)
	writeeval (Source File: writeeval.f90)
	writefermi (Source File: writefermi.f90)
	writegeom (Source File: writegeom.f90)
	writeiad (Source File: writeiad.f90)
	writeinfo (Source File: writeinfo.f90)
	writekpts (Source File: writekpts.f90)
	writelinen (Source File: writelinen.f90)
	writepmat (Source File: writepmat.f90)
	writestate (Source File: writestate.f90)
	writesym (Source File: writesym.f90)
	writetm2du (Source File: writetm2du.f90)
	writetm3du (Source File: writetm3du.f90)
	writevclijji (Source File: writevclijji.f90)
	writevclijjk (Source File: writevclijjk.f90)
	writewiq2 (Source File: writewiq2.f90)
	xc_am05 (Source File: xc_am05.f90)
	xc_am05_point (Source File: xc_am05.f90)
	xc_am05_ldax (Source File: xc_am05.f90)
	xc_am05_ldapwc (Source File: xc_am05.f90)
	xc_am05_labertw (Source File: xc_am05.f90)
	xc_pbe (Source File: xc_pbe.f90)
	xc_pwca (Source File: xc_pwca.f90)
	xc_pzca (Source File: xc_pzca.f90)
	xc_vbh (Source File: xc_vbh.f90)
	xc_xalpha (Source File: xc_xalpha.f90)
	ylmrot (Source File: ylmrot.f90)
	ylmroty (Source File: ylmroty.f90)
	z2mctm (Source File: z2mctm.f90)
	z2mmct (Source File: z2mmct.f90)
	z2mm (Source File: z2mm.f90)
	zbessela (Source File: zbessela.f90)
	zbesselb (Source File: zbesselb.f90)
	zfinp (Source File: zfinp.f90)
	zflmconj (Source File: zflmconj.f90)
	zfmtinp (Source File: zfmtinp.f90)
	zftrf (Source File: zftrf.f90)
	zpotclmt (Source File: zpotclmt.f90)
	zpotcoul (Source File: zpotcoul.f90)
	ztorflm (Source File: ztorflm.f90)


